vmdpy


Namevmdpy JSON
Version 0.2 PyPI version JSON
download
home_pagehttp://github.com/vrcarva/vmdpy
SummaryVariational Mode Decomposition (VMD) algorithm
upload_time2020-08-11 22:08:45
maintainer
docs_urlNone
authorVinicius Rezende Carvalho
requires_python
license
keywords vmd variational decomposition
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # vmdpy: Variational mode decomposition in Python

Function for decomposing a signal according to the Variational Mode Decomposition ([Dragomiretskiy and Zosso, 2014](https://doi.org/10.1109/TSP.2013.2288675)) method.  

This package is a Python translation of the original [VMD MATLAB toolbox](https://www.mathworks.com/matlabcentral/fileexchange/44765-variational-mode-decomposition)  


## Installation 

1) pip install vmdpy 

OR

2) Dowload the project from https://github.com/vrcarva/vmdpy, then run "python setup.py install" from the project folder

## Citation and Contact
Paper available at: https://doi.org/10.1016/j.bspc.2020.102073

If you find this package useful, we kindly ask you to cite it in your work:   
Vinícius R. Carvalho, Márcio F.D. Moraes, Antônio P. Braga, Eduardo M.A.M. Mendes,
Evaluating five different adaptive decomposition methods for EEG signal seizure detection and classification,
Biomedical Signal Processing and Control,
Volume 62,
2020,
102073,
ISSN 1746-8094,
https://doi.org/10.1016/j.bspc.2020.102073.  

If you developed a new funcionality or fixed anything in the code, just provide me the corresponding files and which credit should I include in this readme file. 

For suggestions, questions, comments, etc: vrcarva@ufmg.br  
Vinicius Rezende Carvalho  
Programa de Pós-Graduação em Engenharia Elétrica – Universidade Federal de Minas Gerais, Belo Horizonte, Brasil  
Núcleo de Neurociências - Universidade Federal de Minas Gerais  


## Example script
```python
#%% Simple example  
import numpy as np  
import matplotlib.pyplot as plt  
from vmdpy import VMD  

#. Time Domain 0 to T  
T = 1000  
fs = 1/T  
t = np.arange(1,T+1)/T  
freqs = 2*np.pi*(t-0.5-fs)/(fs)  

#. center frequencies of components  
f_1 = 2  
f_2 = 24  
f_3 = 288  

#. modes  
v_1 = (np.cos(2*np.pi*f_1*t))  
v_2 = 1/4*(np.cos(2*np.pi*f_2*t))  
v_3 = 1/16*(np.cos(2*np.pi*f_3*t))  

f = v_1 + v_2 + v_3 + 0.1*np.random.randn(v_1.size)  

#. some sample parameters for VMD  
alpha = 2000       # moderate bandwidth constraint  
tau = 0.            # noise-tolerance (no strict fidelity enforcement)  
K = 3              # 3 modes  
DC = 0             # no DC part imposed  
init = 1           # initialize omegas uniformly  
tol = 1e-7  


#. Run actual VMD code  
u, u_hat, omega = VMD(f, alpha, tau, K, DC, init, tol)  
```


            

Raw data

            {
    "_id": null,
    "home_page": "http://github.com/vrcarva/vmdpy",
    "name": "vmdpy",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "VMD,variational,decomposition",
    "author": "Vinicius Rezende Carvalho",
    "author_email": "vrcarva@ufmg.br",
    "download_url": "",
    "platform": "",
    "description": "# vmdpy: Variational mode decomposition in Python\r\n\r\nFunction for decomposing a signal according to the Variational Mode Decomposition ([Dragomiretskiy and Zosso, 2014](https://doi.org/10.1109/TSP.2013.2288675)) method.  \r\n\r\nThis package is a Python translation of the original [VMD MATLAB toolbox](https://www.mathworks.com/matlabcentral/fileexchange/44765-variational-mode-decomposition)  \r\n\r\n\r\n## Installation \r\n\r\n1) pip install vmdpy \r\n\r\nOR\r\n\r\n2) Dowload the project from https://github.com/vrcarva/vmdpy, then run \"python setup.py install\" from the project folder\r\n\r\n## Citation and Contact\r\nPaper available at: https://doi.org/10.1016/j.bspc.2020.102073\r\n\r\nIf you find this package useful, we kindly ask you to cite it in your work:   \r\nVin\u00edcius R. Carvalho, M\u00e1rcio F.D. Moraes, Ant\u00f4nio P. Braga, Eduardo M.A.M. Mendes,\r\nEvaluating five different adaptive decomposition methods for EEG signal seizure detection and classification,\r\nBiomedical Signal Processing and Control,\r\nVolume 62,\r\n2020,\r\n102073,\r\nISSN 1746-8094,\r\nhttps://doi.org/10.1016/j.bspc.2020.102073.  \r\n\r\nIf you developed a new funcionality or fixed anything in the code, just provide me the corresponding files and which credit should I include in this readme file. \r\n\r\nFor suggestions, questions, comments, etc: vrcarva@ufmg.br  \r\nVinicius Rezende Carvalho  \r\nPrograma de P\u00f3s-Gradua\u00e7\u00e3o em Engenharia El\u00e9trica \u2013 Universidade Federal de Minas Gerais, Belo Horizonte, Brasil  \r\nN\u00facleo de Neuroci\u00eancias - Universidade Federal de Minas Gerais  \r\n\r\n\r\n## Example script\r\n```python\r\n#%% Simple example  \r\nimport numpy as np  \r\nimport matplotlib.pyplot as plt  \r\nfrom vmdpy import VMD  \r\n\r\n#. Time Domain 0 to T  \r\nT = 1000  \r\nfs = 1/T  \r\nt = np.arange(1,T+1)/T  \r\nfreqs = 2*np.pi*(t-0.5-fs)/(fs)  \r\n\r\n#. center frequencies of components  \r\nf_1 = 2  \r\nf_2 = 24  \r\nf_3 = 288  \r\n\r\n#. modes  \r\nv_1 = (np.cos(2*np.pi*f_1*t))  \r\nv_2 = 1/4*(np.cos(2*np.pi*f_2*t))  \r\nv_3 = 1/16*(np.cos(2*np.pi*f_3*t))  \r\n\r\nf = v_1 + v_2 + v_3 + 0.1*np.random.randn(v_1.size)  \r\n\r\n#. some sample parameters for VMD  \r\nalpha = 2000       # moderate bandwidth constraint  \r\ntau = 0.            # noise-tolerance (no strict fidelity enforcement)  \r\nK = 3              # 3 modes  \r\nDC = 0             # no DC part imposed  \r\ninit = 1           # initialize omegas uniformly  \r\ntol = 1e-7  \r\n\r\n\r\n#. Run actual VMD code  \r\nu, u_hat, omega = VMD(f, alpha, tau, K, DC, init, tol)  \r\n```\r\n\r\n",
    "bugtrack_url": null,
    "license": "",
    "summary": "Variational Mode Decomposition (VMD) algorithm",
    "version": "0.2",
    "project_urls": {
        "Homepage": "http://github.com/vrcarva/vmdpy"
    },
    "split_keywords": [
        "vmd",
        "variational",
        "decomposition"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "0a9623fdc1b42a835e3c64bae636bd1b2249680c4c70bbb416f09e8a29a1d8d8",
                "md5": "1f8e8a6097251a883cfded4a0adb2a9a",
                "sha256": "331e3013dbc95beb564fe7ce70a0f95a09efb44d0ec56a28f61e9ab40fe16c1b"
            },
            "downloads": -1,
            "filename": "vmdpy-0.2-py2.py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "1f8e8a6097251a883cfded4a0adb2a9a",
            "packagetype": "bdist_wheel",
            "python_version": "py2.py3",
            "requires_python": null,
            "size": 6547,
            "upload_time": "2020-08-11T22:08:45",
            "upload_time_iso_8601": "2020-08-11T22:08:45.708952Z",
            "url": "https://files.pythonhosted.org/packages/0a/96/23fdc1b42a835e3c64bae636bd1b2249680c4c70bbb416f09e8a29a1d8d8/vmdpy-0.2-py2.py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2020-08-11 22:08:45",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "vrcarva",
    "github_project": "vmdpy",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "vmdpy"
}
        
Elapsed time: 8.63684s