vnpy-lstar


Namevnpy-lstar JSON
Version 6.3.15.0 PyPI version JSON
download
home_pagehttps://www.vnpy.com
SummaryL-Star gateway for VeighNa quant trading framework.
upload_time2024-09-29 01:32:22
maintainerNone
docs_urlNone
authorXiaoyou Chen
requires_python>=3.10
licenseMIT
keywords quant quantitative investment trading algotrading
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # VeighNa框架的利星资管系统交易接口

<p align="center">
  <img src ="https://vnpy.oss-cn-shanghai.aliyuncs.com/vnpy-logo.png"/>
</p>

<p align="center">
    <img src ="https://img.shields.io/badge/version-6.3.15.0-blueviolet.svg"/>
    <img src ="https://img.shields.io/badge/platform-windows-yellow.svg"/>
    <img src ="https://img.shields.io/badge/python-3.10|3.11|3.12-blue.svg" />
    <img src ="https://img.shields.io/github/license/vnpy/vnpy.svg?color=orange"/>
</p>

## 说明

基于利星期货资管系统的交易API封装开发,行情接口使用CTP。

API版本号:

1. 交易API:利星资管 v6.3.15
2. 行情API:CTP v6.7.2

## 安装

安装环境推荐基于3.9.2版本以上的【[**VeighNa Studio**](https://www.vnpy.com)】。

直接使用pip命令:

```
pip install vnpy_lstar
```


或者下载源代码后,解压后在cmd中运行:

```
pip install .
```

使用源代码安装时需要进行C++编译,因此在执行上述命令之前请确保已经安装了【Visual Studio(Windows)】编译器。

## 使用

以脚本方式启动(script/run.py):

```
from vnpy.event import EventEngine
from vnpy.trader.engine import MainEngine
from vnpy.trader.ui import MainWindow, create_qapp

from vnpy_lstar import LstarGateway


def main():
    """主入口函数"""
    qapp = create_qapp()

    event_engine = EventEngine()
    main_engine = MainEngine(event_engine)
    main_engine.add_gateway(LstarGateway)
    
    main_window = MainWindow(main_engine, event_engine)
    main_window.showMaximized()

    qapp.exec()


if __name__ == "__main__":
    main()
```

            

Raw data

            {
    "_id": null,
    "home_page": "https://www.vnpy.com",
    "name": "vnpy-lstar",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.10",
    "maintainer_email": null,
    "keywords": "quant, quantitative, investment, trading, algotrading",
    "author": "Xiaoyou Chen",
    "author_email": "xiaoyou.chen@mail.vnpy.com",
    "download_url": "https://files.pythonhosted.org/packages/2c/58/8090ba1702130afe34fbfd4303df8681b19c73e58e28b1866edbc6481270/vnpy_lstar-6.3.15.0.tar.gz",
    "platform": null,
    "description": "# VeighNa\u6846\u67b6\u7684\u5229\u661f\u8d44\u7ba1\u7cfb\u7edf\u4ea4\u6613\u63a5\u53e3\r\n\r\n<p align=\"center\">\r\n  <img src =\"https://vnpy.oss-cn-shanghai.aliyuncs.com/vnpy-logo.png\"/>\r\n</p>\r\n\r\n<p align=\"center\">\r\n    <img src =\"https://img.shields.io/badge/version-6.3.15.0-blueviolet.svg\"/>\r\n    <img src =\"https://img.shields.io/badge/platform-windows-yellow.svg\"/>\r\n    <img src =\"https://img.shields.io/badge/python-3.10|3.11|3.12-blue.svg\" />\r\n    <img src =\"https://img.shields.io/github/license/vnpy/vnpy.svg?color=orange\"/>\r\n</p>\r\n\r\n## \u8bf4\u660e\r\n\r\n\u57fa\u4e8e\u5229\u661f\u671f\u8d27\u8d44\u7ba1\u7cfb\u7edf\u7684\u4ea4\u6613API\u5c01\u88c5\u5f00\u53d1\uff0c\u884c\u60c5\u63a5\u53e3\u4f7f\u7528CTP\u3002\r\n\r\nAPI\u7248\u672c\u53f7\uff1a\r\n\r\n1. \u4ea4\u6613API\uff1a\u5229\u661f\u8d44\u7ba1 v6.3.15\r\n2. \u884c\u60c5API\uff1aCTP v6.7.2\r\n\r\n## \u5b89\u88c5\r\n\r\n\u5b89\u88c5\u73af\u5883\u63a8\u8350\u57fa\u4e8e3.9.2\u7248\u672c\u4ee5\u4e0a\u7684\u3010[**VeighNa Studio**](https://www.vnpy.com)\u3011\u3002\r\n\r\n\u76f4\u63a5\u4f7f\u7528pip\u547d\u4ee4\uff1a\r\n\r\n```\r\npip install vnpy_lstar\r\n```\r\n\r\n\r\n\u6216\u8005\u4e0b\u8f7d\u6e90\u4ee3\u7801\u540e\uff0c\u89e3\u538b\u540e\u5728cmd\u4e2d\u8fd0\u884c\uff1a\r\n\r\n```\r\npip install .\r\n```\r\n\r\n\u4f7f\u7528\u6e90\u4ee3\u7801\u5b89\u88c5\u65f6\u9700\u8981\u8fdb\u884cC++\u7f16\u8bd1\uff0c\u56e0\u6b64\u5728\u6267\u884c\u4e0a\u8ff0\u547d\u4ee4\u4e4b\u524d\u8bf7\u786e\u4fdd\u5df2\u7ecf\u5b89\u88c5\u4e86\u3010Visual Studio\uff08Windows\uff09\u3011\u7f16\u8bd1\u5668\u3002\r\n\r\n## \u4f7f\u7528\r\n\r\n\u4ee5\u811a\u672c\u65b9\u5f0f\u542f\u52a8\uff08script/run.py\uff09\uff1a\r\n\r\n```\r\nfrom vnpy.event import EventEngine\r\nfrom vnpy.trader.engine import MainEngine\r\nfrom vnpy.trader.ui import MainWindow, create_qapp\r\n\r\nfrom vnpy_lstar import LstarGateway\r\n\r\n\r\ndef main():\r\n    \"\"\"\u4e3b\u5165\u53e3\u51fd\u6570\"\"\"\r\n    qapp = create_qapp()\r\n\r\n    event_engine = EventEngine()\r\n    main_engine = MainEngine(event_engine)\r\n    main_engine.add_gateway(LstarGateway)\r\n    \r\n    main_window = MainWindow(main_engine, event_engine)\r\n    main_window.showMaximized()\r\n\r\n    qapp.exec()\r\n\r\n\r\nif __name__ == \"__main__\":\r\n    main()\r\n```\r\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "L-Star gateway for VeighNa quant trading framework.",
    "version": "6.3.15.0",
    "project_urls": {
        "Homepage": "https://www.vnpy.com"
    },
    "split_keywords": [
        "quant",
        " quantitative",
        " investment",
        " trading",
        " algotrading"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "21a436d65e8bff622c4e76eee272dc16d073e222c2032e8f02ed0460971108d2",
                "md5": "bf6015f8c6897b607e8ddf091503b916",
                "sha256": "f511d405f084c6c8af7188ea3af62ad3d3eb63a815fc6cc0df506e4f57d8109a"
            },
            "downloads": -1,
            "filename": "vnpy_lstar-6.3.15.0-cp310-cp310-win_amd64.whl",
            "has_sig": false,
            "md5_digest": "bf6015f8c6897b607e8ddf091503b916",
            "packagetype": "bdist_wheel",
            "python_version": "cp310",
            "requires_python": ">=3.10",
            "size": 4155164,
            "upload_time": "2024-09-29T01:32:20",
            "upload_time_iso_8601": "2024-09-29T01:32:20.163347Z",
            "url": "https://files.pythonhosted.org/packages/21/a4/36d65e8bff622c4e76eee272dc16d073e222c2032e8f02ed0460971108d2/vnpy_lstar-6.3.15.0-cp310-cp310-win_amd64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "2c588090ba1702130afe34fbfd4303df8681b19c73e58e28b1866edbc6481270",
                "md5": "a80290d682f7b3918e0208538e367b90",
                "sha256": "09ef28b3ade5ce1daafffb57c32751a96424b9f51c70e297c891a6e3b4d0c86b"
            },
            "downloads": -1,
            "filename": "vnpy_lstar-6.3.15.0.tar.gz",
            "has_sig": false,
            "md5_digest": "a80290d682f7b3918e0208538e367b90",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.10",
            "size": 3632631,
            "upload_time": "2024-09-29T01:32:22",
            "upload_time_iso_8601": "2024-09-29T01:32:22.495519Z",
            "url": "https://files.pythonhosted.org/packages/2c/58/8090ba1702130afe34fbfd4303df8681b19c73e58e28b1866edbc6481270/vnpy_lstar-6.3.15.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-09-29 01:32:22",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "vnpy-lstar"
}
        
Elapsed time: 0.68055s