vnpy-taos


Namevnpy-taos JSON
Version 1.0.3 PyPI version JSON
download
home_pagehttps://www.vnpy.com
SummaryTDengine database adapter for VeighNa quant trading framework.
upload_time2024-12-26 02:48:50
maintainerNone
docs_urlNone
authorXiaoyou Chen
requires_pythonNone
licenseMIT
keywords quant quantitative investment trading algotrading
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # VeighNa框架的TDengine数据库接口

<p align="center">
  <img src ="https://vnpy.oss-cn-shanghai.aliyuncs.com/vnpy-logo.png"/>
</p>

<p align="center">
    <img src ="https://img.shields.io/badge/version-1.0.3-blueviolet.svg"/>
    <img src ="https://img.shields.io/badge/platform-windows|linux-yellow.svg"/>
    <img src ="https://img.shields.io/badge/python-3.10|3.11|3.12-blue.svg" />
</p>

## 说明

基于TDengine的Python连接器taospy开发的TDengine数据库接口。

**需要使用TDengine 3.3.4.8以上版本。**

## 使用

在VeighNa中使用TDengine时,需要在全局配置中填写以下字段信息:

|名称|含义|必填|举例|
|---------|----|---|---|
|database.name|名称|是|taos|
|database.host|地址|是|localhost|
|database.port|端口|是|6030|
|database.database|实例|是|vnpy|
|database.user|用户名|是|root|
|database.password|密码|是|taosdata|

### 连接

连接前需要根据环境安装配置TDengine的客户端和服务端,TDengine的安装流程请参考[官方文档](https://docs.taosdata.com/get-started/docker/)。

新手用户推荐选择Docker方式运行,Windows系统上的整体流程如下:

1. 安装启动[Docker Desktop](https://www.docker.com/)软件
2. 在命令行中拉取最新版本TDengine容器镜像:```docker pull tdengine/tdengine:latest```
3. 运行当前仓库中的start_docker.sh脚本,启动TDengine容器
4. 安装TDengine的Windows客户端软件:[TDengine-client-3.3.4.8-Windows-x64.exe (10.2 M)](https://docs.taosdata.com/get-started/package/)
5. 安装vnpy_taos模块:```pip install vnpy_taos```
6. 参考上一步【使用】中的内容修改VeighNa Trader全局配置中的相关字段
7. 重启VeighNa Trader即可开始使用

            

Raw data

            {
    "_id": null,
    "home_page": "https://www.vnpy.com",
    "name": "vnpy-taos",
    "maintainer": null,
    "docs_url": null,
    "requires_python": null,
    "maintainer_email": null,
    "keywords": "quant, quantitative, investment, trading, algotrading",
    "author": "Xiaoyou Chen",
    "author_email": "xiaoyou.chen@mail.vnpy.com",
    "download_url": "https://files.pythonhosted.org/packages/c8/51/b3a0e2de89e2d8f425291f675130943a73fecd8ba926c2fe5850f191d73b/vnpy_taos-1.0.3.tar.gz",
    "platform": null,
    "description": "# VeighNa\u6846\u67b6\u7684TDengine\u6570\u636e\u5e93\u63a5\u53e3\r\n\r\n<p align=\"center\">\r\n  <img src =\"https://vnpy.oss-cn-shanghai.aliyuncs.com/vnpy-logo.png\"/>\r\n</p>\r\n\r\n<p align=\"center\">\r\n    <img src =\"https://img.shields.io/badge/version-1.0.3-blueviolet.svg\"/>\r\n    <img src =\"https://img.shields.io/badge/platform-windows|linux-yellow.svg\"/>\r\n    <img src =\"https://img.shields.io/badge/python-3.10|3.11|3.12-blue.svg\" />\r\n</p>\r\n\r\n## \u8bf4\u660e\r\n\r\n\u57fa\u4e8eTDengine\u7684Python\u8fde\u63a5\u5668taospy\u5f00\u53d1\u7684TDengine\u6570\u636e\u5e93\u63a5\u53e3\u3002\r\n\r\n**\u9700\u8981\u4f7f\u7528TDengine 3.3.4.8\u4ee5\u4e0a\u7248\u672c\u3002**\r\n\r\n## \u4f7f\u7528\r\n\r\n\u5728VeighNa\u4e2d\u4f7f\u7528TDengine\u65f6\uff0c\u9700\u8981\u5728\u5168\u5c40\u914d\u7f6e\u4e2d\u586b\u5199\u4ee5\u4e0b\u5b57\u6bb5\u4fe1\u606f\uff1a\r\n\r\n|\u540d\u79f0|\u542b\u4e49|\u5fc5\u586b|\u4e3e\u4f8b|\r\n|---------|----|---|---|\r\n|database.name|\u540d\u79f0|\u662f|taos|\r\n|database.host|\u5730\u5740|\u662f|localhost|\r\n|database.port|\u7aef\u53e3|\u662f|6030|\r\n|database.database|\u5b9e\u4f8b|\u662f|vnpy|\r\n|database.user|\u7528\u6237\u540d|\u662f|root|\r\n|database.password|\u5bc6\u7801|\u662f|taosdata|\r\n\r\n### \u8fde\u63a5\r\n\r\n\u8fde\u63a5\u524d\u9700\u8981\u6839\u636e\u73af\u5883\u5b89\u88c5\u914d\u7f6eTDengine\u7684\u5ba2\u6237\u7aef\u548c\u670d\u52a1\u7aef\uff0cTDengine\u7684\u5b89\u88c5\u6d41\u7a0b\u8bf7\u53c2\u8003[\u5b98\u65b9\u6587\u6863](https://docs.taosdata.com/get-started/docker/)\u3002\r\n\r\n\u65b0\u624b\u7528\u6237\u63a8\u8350\u9009\u62e9Docker\u65b9\u5f0f\u8fd0\u884c\uff0cWindows\u7cfb\u7edf\u4e0a\u7684\u6574\u4f53\u6d41\u7a0b\u5982\u4e0b\uff1a\r\n\r\n1. \u5b89\u88c5\u542f\u52a8[Docker Desktop](https://www.docker.com/)\u8f6f\u4ef6\r\n2. \u5728\u547d\u4ee4\u884c\u4e2d\u62c9\u53d6\u6700\u65b0\u7248\u672cTDengine\u5bb9\u5668\u955c\u50cf\uff1a```docker pull tdengine/tdengine:latest```\r\n3. \u8fd0\u884c\u5f53\u524d\u4ed3\u5e93\u4e2d\u7684start_docker.sh\u811a\u672c\uff0c\u542f\u52a8TDengine\u5bb9\u5668\r\n4. \u5b89\u88c5TDengine\u7684Windows\u5ba2\u6237\u7aef\u8f6f\u4ef6\uff1a[TDengine-client-3.3.4.8-Windows-x64.exe (10.2 M)](https://docs.taosdata.com/get-started/package/)\r\n5. \u5b89\u88c5vnpy_taos\u6a21\u5757\uff1a```pip install vnpy_taos```\r\n6. \u53c2\u8003\u4e0a\u4e00\u6b65\u3010\u4f7f\u7528\u3011\u4e2d\u7684\u5185\u5bb9\u4fee\u6539VeighNa Trader\u5168\u5c40\u914d\u7f6e\u4e2d\u7684\u76f8\u5173\u5b57\u6bb5\r\n7. \u91cd\u542fVeighNa Trader\u5373\u53ef\u5f00\u59cb\u4f7f\u7528\r\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "TDengine database adapter for VeighNa quant trading framework.",
    "version": "1.0.3",
    "project_urls": {
        "Homepage": "https://www.vnpy.com"
    },
    "split_keywords": [
        "quant",
        " quantitative",
        " investment",
        " trading",
        " algotrading"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "a25af72d3222b5dbc9f24319e62b73947ef3cd732cc3fb58f824d2b42cf1b800",
                "md5": "e9092eeb11008295ad8f53ff5e4639ab",
                "sha256": "1801a14ec8932f311097f4c5e888288e9dc93254279ea7efc46b23c5f547e762"
            },
            "downloads": -1,
            "filename": "vnpy_taos-1.0.3-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "e9092eeb11008295ad8f53ff5e4639ab",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 7779,
            "upload_time": "2024-12-26T02:48:47",
            "upload_time_iso_8601": "2024-12-26T02:48:47.418646Z",
            "url": "https://files.pythonhosted.org/packages/a2/5a/f72d3222b5dbc9f24319e62b73947ef3cd732cc3fb58f824d2b42cf1b800/vnpy_taos-1.0.3-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "c851b3a0e2de89e2d8f425291f675130943a73fecd8ba926c2fe5850f191d73b",
                "md5": "5c05d0d4ff74d491584c01d787f7ef30",
                "sha256": "344ff94fa9af33665c9f8b8098af1830299c3155737cf7f531f7c10744a7a9e7"
            },
            "downloads": -1,
            "filename": "vnpy_taos-1.0.3.tar.gz",
            "has_sig": false,
            "md5_digest": "5c05d0d4ff74d491584c01d787f7ef30",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 7711,
            "upload_time": "2024-12-26T02:48:50",
            "upload_time_iso_8601": "2024-12-26T02:48:50.630355Z",
            "url": "https://files.pythonhosted.org/packages/c8/51/b3a0e2de89e2d8f425291f675130943a73fecd8ba926c2fe5850f191d73b/vnpy_taos-1.0.3.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-12-26 02:48:50",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "vnpy-taos"
}
        
Elapsed time: 2.57253s