vodin


Namevodin JSON
Version 0.0.3 PyPI version JSON
download
home_pagehttps://github.com/kyegomez/odin
SummaryOdin - Pytorch
upload_time2023-10-09 18:52:56
maintainer
docs_urlNone
authorKye Gomez
requires_python>=3.6,<4.0
licenseMIT
keywords artificial intelligence deep learning optimizers prompt engineering
VCS
bugtrack_url
requirements supervision tqdm ultranalytics
Travis-CI No Travis.
coveralls test coverage No coveralls.
            [![Multi-Modality](agorabanner.png)](https://discord.gg/qUtxnK2NMf)

# Odin
Super Fast and super cheap object detection at massive scale in less than 10 lines of code!

# Appreciation
* Lucidrains
* Agorians


# Install
`pip install vodin`

# Usage

Here are three examples demonstrating the usage of the `Odin` class from your provided code:

**Example 1: Basic Usage**

```python
# Import the necessary modules and classes
from odin import Odin

# Initialize the Odin object with paths and thresholds
odin = Odin(
    source_weights_path="yolo.weights",
    source_video_path="input_video.mp4",
    target_video_path="output_video.mp4",
    confidence_threshold=0.3,
    iou_threshold=0.7
)

# Run the object to process the video
odin.run()
```

**Example 2: Custom Parameters**

```python
# Import the necessary modules and classes
from odin import Odin

# Initialize the Odin object with custom parameters
odin = Odin(
    source_weights_path="custom_yolo.weights",
    source_video_path="input_video.mp4",
    target_video_path="output_video.mp4",
    confidence_threshold=0.5,
    iou_threshold=0.6
)

# Run the object to process the video
odin.run()
```

**Example 3: Advanced Usage**

```python
# Import the necessary modules and classes
from odin import Odin

# Initialize the Odin object with paths and thresholds
odin = Odin(
    source_weights_path="yolo.weights",
    source_video_path="input_video.mp4",
    target_video_path="output_video.mp4",
    confidence_threshold=0.3,
    iou_threshold=0.7
)

# Customize further configurations if needed
odin.tracker.set_max_distance(50)
odin.box_annotator.set_box_color((0, 255, 0))
odin.model.set_device("cuda")

# Run the object to process the video
odin.run()
```

# Architecture
* [Odin utilizes YoloV7, weights can be downloaded here](https://drive.google.com/file/d/1yEYFq1jCIpklofMMhuqQKwyTfvj1hLQ1/view)

# License
MIT

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/kyegomez/odin",
    "name": "vodin",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.6,<4.0",
    "maintainer_email": "",
    "keywords": "artificial intelligence,deep learning,optimizers,Prompt Engineering",
    "author": "Kye Gomez",
    "author_email": "kye@apac.ai",
    "download_url": "https://files.pythonhosted.org/packages/42/84/b67789c59c44c1fcb58656209cc26c386657bc2a9aeeda83dc65ba4777cd/vodin-0.0.3.tar.gz",
    "platform": null,
    "description": "[![Multi-Modality](agorabanner.png)](https://discord.gg/qUtxnK2NMf)\n\n# Odin\nSuper Fast and super cheap object detection at massive scale in less than 10 lines of code!\n\n# Appreciation\n* Lucidrains\n* Agorians\n\n\n# Install\n`pip install vodin`\n\n# Usage\n\nHere are three examples demonstrating the usage of the `Odin` class from your provided code:\n\n**Example 1: Basic Usage**\n\n```python\n# Import the necessary modules and classes\nfrom odin import Odin\n\n# Initialize the Odin object with paths and thresholds\nodin = Odin(\n    source_weights_path=\"yolo.weights\",\n    source_video_path=\"input_video.mp4\",\n    target_video_path=\"output_video.mp4\",\n    confidence_threshold=0.3,\n    iou_threshold=0.7\n)\n\n# Run the object to process the video\nodin.run()\n```\n\n**Example 2: Custom Parameters**\n\n```python\n# Import the necessary modules and classes\nfrom odin import Odin\n\n# Initialize the Odin object with custom parameters\nodin = Odin(\n    source_weights_path=\"custom_yolo.weights\",\n    source_video_path=\"input_video.mp4\",\n    target_video_path=\"output_video.mp4\",\n    confidence_threshold=0.5,\n    iou_threshold=0.6\n)\n\n# Run the object to process the video\nodin.run()\n```\n\n**Example 3: Advanced Usage**\n\n```python\n# Import the necessary modules and classes\nfrom odin import Odin\n\n# Initialize the Odin object with paths and thresholds\nodin = Odin(\n    source_weights_path=\"yolo.weights\",\n    source_video_path=\"input_video.mp4\",\n    target_video_path=\"output_video.mp4\",\n    confidence_threshold=0.3,\n    iou_threshold=0.7\n)\n\n# Customize further configurations if needed\nodin.tracker.set_max_distance(50)\nodin.box_annotator.set_box_color((0, 255, 0))\nodin.model.set_device(\"cuda\")\n\n# Run the object to process the video\nodin.run()\n```\n\n# Architecture\n* [Odin utilizes YoloV7, weights can be downloaded here](https://drive.google.com/file/d/1yEYFq1jCIpklofMMhuqQKwyTfvj1hLQ1/view)\n\n# License\nMIT\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Odin - Pytorch",
    "version": "0.0.3",
    "project_urls": {
        "Homepage": "https://github.com/kyegomez/odin",
        "Repository": "https://github.com/kyegomez/odin"
    },
    "split_keywords": [
        "artificial intelligence",
        "deep learning",
        "optimizers",
        "prompt engineering"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "a92185d3d5da9008c8c577f6b141273aea4c849fb2df0a69230c83b6da05beda",
                "md5": "ef8b6ac9a87239dd5d159aa81acab217",
                "sha256": "6db4c23b8d1a098bd1b8db624ed1a36bab290255d37dfebdadc3f37a295f9f0b"
            },
            "downloads": -1,
            "filename": "vodin-0.0.3-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "ef8b6ac9a87239dd5d159aa81acab217",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.6,<4.0",
            "size": 7169,
            "upload_time": "2023-10-09T18:52:55",
            "upload_time_iso_8601": "2023-10-09T18:52:55.088523Z",
            "url": "https://files.pythonhosted.org/packages/a9/21/85d3d5da9008c8c577f6b141273aea4c849fb2df0a69230c83b6da05beda/vodin-0.0.3-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "4284b67789c59c44c1fcb58656209cc26c386657bc2a9aeeda83dc65ba4777cd",
                "md5": "2e18aaed05a60ebf36aa34d4a7320ca2",
                "sha256": "391f047cab668db60713f59619ee9f39830dbeaf4ac390b86c4e24caabe4337c"
            },
            "downloads": -1,
            "filename": "vodin-0.0.3.tar.gz",
            "has_sig": false,
            "md5_digest": "2e18aaed05a60ebf36aa34d4a7320ca2",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.6,<4.0",
            "size": 6406,
            "upload_time": "2023-10-09T18:52:56",
            "upload_time_iso_8601": "2023-10-09T18:52:56.625027Z",
            "url": "https://files.pythonhosted.org/packages/42/84/b67789c59c44c1fcb58656209cc26c386657bc2a9aeeda83dc65ba4777cd/vodin-0.0.3.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-10-09 18:52:56",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "kyegomez",
    "github_project": "odin",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "requirements": [
        {
            "name": "supervision",
            "specs": []
        },
        {
            "name": "tqdm",
            "specs": []
        },
        {
            "name": "ultranalytics",
            "specs": []
        }
    ],
    "lcname": "vodin"
}
        
Elapsed time: 0.15142s