voice-toolbox


Namevoice-toolbox JSON
Version 1.0.0 PyPI version JSON
download
home_pageNone
SummaryConvenient wrappers for audio signal processing in Python
upload_time2024-04-26 15:37:03
maintainerNone
docs_urlNone
authorEmma Hughson
requires_python>=3.5
licenseNone
keywords audio audio analysis
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Voice Toolbox <img align="left" width="90" height="90" src="soundwave.jpeg">
The place to solve all your audio signal processing needs. 

The current repo is under **construction**. Goal is to create a repository that contains all voice signal processing functions available from different open source projects and libraries, such as parsel mouth and librosa. 

## Files
**To start**: Setup a conda environment and run 'pip3 install -r requirements.txt' before running the available scripts. 
>> **Important**: if you get an error with parselmouth make sure the installation is 'pip3 install praat-parselmouth'

________________________________________________________________________________________________________________________
The script for extracting features is parsel_process.py. 
 * **To run**: "python3 feature_extraction.py [sampling rate] [filepath] [output filepath] --[feature flag]"
 
 > **feature flags**: formants, ZCR, harmonics, rate_of_speech, loudness, pitch_features, spectral_features, energy

### **Features currently availabe**:
1. *Spectral Features*:
* pitch
* pitch range
* spectral slope
* mel-frequency cepstral coefficients (MFCC)
* mean spectral roll-off
* median F0 (fundamental frequency)

2. *Rate of Speech* and *loudness*:
* max intensity
* mean intensity
* syllables per second
* pause rate
* energy

3. *Harmonics*
* harmonics to noise (HNR)
* Formants: f1,f2, f3, f4
* number of zero crossings (ZCR)

### Extra Scripts for processed features
For visualization:
 1. visualize_voice.py for all scatter plots along with other plotting features from praat. 
 * To run: 'python3 visualize_voice.py'
 2. radar_plot.py for all radar plots
 * To run: 'python3 radar_plot.py'

For PCA analysis of voice data:
 voice_pca.py is for PCA, RFE and Correlation plot:
* - To run: 'voice_pca.py'

________________________________________________________________________________________________________________________



            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "voice-toolbox",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.5",
    "maintainer_email": null,
    "keywords": "audio, audio analysis",
    "author": "Emma Hughson",
    "author_email": "Paige Tuttosi <ptuttosi@gmail.com>",
    "download_url": "https://files.pythonhosted.org/packages/43/a4/07965a1e06f197c857ce1a3ffc3cfee8d2371367bc71b4adb8500db965b5/voice_toolbox-1.0.0.tar.gz",
    "platform": null,
    "description": "# Voice Toolbox <img align=\"left\" width=\"90\" height=\"90\" src=\"soundwave.jpeg\">\r\nThe place to solve all your audio signal processing needs. \r\n\r\nThe current repo is under **construction**. Goal is to create a repository that contains all voice signal processing functions available from different open source projects and libraries, such as parsel mouth and librosa. \r\n\r\n## Files\r\n**To start**: Setup a conda environment and run 'pip3 install -r requirements.txt' before running the available scripts. \r\n>> **Important**: if you get an error with parselmouth make sure the installation is 'pip3 install praat-parselmouth'\r\n\r\n________________________________________________________________________________________________________________________\r\nThe script for extracting features is parsel_process.py. \r\n * **To run**: \"python3 feature_extraction.py [sampling rate] [filepath] [output filepath] --[feature flag]\"\r\n \r\n > **feature flags**: formants, ZCR, harmonics, rate_of_speech, loudness, pitch_features, spectral_features, energy\r\n\r\n### **Features currently availabe**:\r\n1. *Spectral Features*:\r\n* pitch\r\n* pitch range\r\n* spectral slope\r\n* mel-frequency cepstral coefficients (MFCC)\r\n* mean spectral roll-off\r\n* median F0 (fundamental frequency)\r\n\r\n2. *Rate of Speech* and *loudness*:\r\n* max intensity\r\n* mean intensity\r\n* syllables per second\r\n* pause rate\r\n* energy\r\n\r\n3. *Harmonics*\r\n* harmonics to noise (HNR)\r\n* Formants: f1,f2, f3, f4\r\n* number of zero crossings (ZCR)\r\n\r\n### Extra Scripts for processed features\r\nFor visualization:\r\n 1. visualize_voice.py for all scatter plots along with other plotting features from praat. \r\n * To run: 'python3 visualize_voice.py'\r\n 2. radar_plot.py for all radar plots\r\n * To run: 'python3 radar_plot.py'\r\n\r\nFor PCA analysis of voice data:\r\n voice_pca.py is for PCA, RFE and Correlation plot:\r\n* - To run: 'voice_pca.py'\r\n\r\n________________________________________________________________________________________________________________________\r\n\r\n\r\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "Convenient wrappers for audio signal processing in Python",
    "version": "1.0.0",
    "project_urls": null,
    "split_keywords": [
        "audio",
        " audio analysis"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "42a69e1cf8cc454d4c40359865057739cd8490ec0dde22260ba6964191079288",
                "md5": "1d896fd13e248bcc66e8bf6dc68f0c60",
                "sha256": "78bd431dfc6ff815cde486dbdfee404bd73c94eaa5d5527995d58eb46afdd134"
            },
            "downloads": -1,
            "filename": "voice_toolbox-1.0.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "1d896fd13e248bcc66e8bf6dc68f0c60",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.5",
            "size": 8637,
            "upload_time": "2024-04-26T15:37:01",
            "upload_time_iso_8601": "2024-04-26T15:37:01.577079Z",
            "url": "https://files.pythonhosted.org/packages/42/a6/9e1cf8cc454d4c40359865057739cd8490ec0dde22260ba6964191079288/voice_toolbox-1.0.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "43a407965a1e06f197c857ce1a3ffc3cfee8d2371367bc71b4adb8500db965b5",
                "md5": "5a4ccc1a64a1bc25aaf0b455e5a85816",
                "sha256": "4ffabb7357fe6d2b34337cff28024b48b60c8ba0be68c6958ea8a476c2d21f79"
            },
            "downloads": -1,
            "filename": "voice_toolbox-1.0.0.tar.gz",
            "has_sig": false,
            "md5_digest": "5a4ccc1a64a1bc25aaf0b455e5a85816",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.5",
            "size": 8860,
            "upload_time": "2024-04-26T15:37:03",
            "upload_time_iso_8601": "2024-04-26T15:37:03.674582Z",
            "url": "https://files.pythonhosted.org/packages/43/a4/07965a1e06f197c857ce1a3ffc3cfee8d2371367bc71b4adb8500db965b5/voice_toolbox-1.0.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-04-26 15:37:03",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "voice-toolbox"
}
        
Elapsed time: 3.27391s