voit-inserter


Namevoit-inserter JSON
Version 0.1.1 PyPI version JSON
download
home_pageNone
SummaryVOIT = Virtual Object Insertion Tooolkit.
upload_time2025-02-03 15:29:19
maintainerNone
docs_urlNone
authorNone
requires_python>=3.10
licenseMIT License
keywords object insertion
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            VOIT (**V**irtual **O**bject **I**nsertion **T**oolkit) is a simple library to insert objects to images.

The library focuses on the ease of use and low-level control instead of the raw quality. 

The pre-existing object insertion tool, on which VOIT is heavily based, is in the repositories of the original authors: [inverse renderer](https://github.com/lzqsd/InverseRenderingOfIndoorScene), [object insertion tool](https://github.com/lzqsd/VirtualObjectInsertion).

Main features:

* Handle shadows.
* Handle reflections on the floor.
* Provide tools for authoring of datasets with inserted objects (editing, serialization, deserialization).

# Installation

VOIT depends on Pytorch, but it does not declare it as a requirement in its metadata. You have to manually install it based on the instructions [here](https://https://pytorch.org/). 

You can then install VOIT from PIP or its GitHub repository.

From PIP:

```
pip install voit-inserter
```

From GitHub:

```
pip install git+https://github.com/mntusr/voit
```

# Usage

The simplest example of using VOIT looks like this:

```python
import torch
import numpy as np
import voit
from pathlib import Path

# the image to which the object should be inserted
rgb_image: np.ndarray = ...

# the projection matrix of the camera
t_proj_mat: np.ndarray = ...

# where you want to insert the object
the_pixel_of_the_origin_of_the_inserted_object: voit.Vec2i = ...
the_depth_at_the_pixel_where_the_object_is_inserted: float = ...

# the normal vector of the previous surface
the_normal_of_the_surface_on_which_the_object_is_inserted = voit.Vec3 = ...

inserter = voit.Inserter(
    t_proj_mat=t_proj_mat,
    floor_proxy_size=voit.Vec2(5, 5), # good default for most cases
    im_size=voit.Vec2i(image.shape[2], image.shape[1]),
    shadow_map_size=1024, # good default for most cases
    pt_device=torch.device("cuda")
)

try:
    # the object to insert
    obj = inserter.load_model(Path("mymodel.glb"))

    result = inserter.insert(
        input_im=image,
        input_im_linear=False,
        output_im_linear=False,
        pos_px=the_pixel_of_the_origin_of_the_inserted_object,
        pos_depth=the_depth_at_the_pixel_where_the_object_is_inserted,
        normal_vs=the_normal_of_the_surface_on_which_the_object_is_inserted,
        obj=obj,
    )
finally:
    inserter.destroy()

# the image you made 😁
resulting_image = result.im
```

# How to cite

TBD

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "voit-inserter",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.10",
    "maintainer_email": null,
    "keywords": "object insertion",
    "author": null,
    "author_email": null,
    "download_url": "https://files.pythonhosted.org/packages/d8/3b/f21a4658edfa4728bf08d8eb3ce9385084fbfa0957917eb48f8a6a2376ac/voit_inserter-0.1.1.tar.gz",
    "platform": null,
    "description": "VOIT (**V**irtual **O**bject **I**nsertion **T**oolkit) is a simple library to insert objects to images.\n\nThe library focuses on the ease of use and low-level control instead of the raw quality. \n\nThe pre-existing object insertion tool, on which VOIT is heavily based, is in the repositories of the original authors: [inverse renderer](https://github.com/lzqsd/InverseRenderingOfIndoorScene), [object insertion tool](https://github.com/lzqsd/VirtualObjectInsertion).\n\nMain features:\n\n* Handle shadows.\n* Handle reflections on the floor.\n* Provide tools for authoring of datasets with inserted objects (editing, serialization, deserialization).\n\n# Installation\n\nVOIT depends on Pytorch, but it does not declare it as a requirement in its metadata. You have to manually install it based on the instructions [here](https://https://pytorch.org/). \n\nYou can then install VOIT from PIP or its GitHub repository.\n\nFrom PIP:\n\n```\npip install voit-inserter\n```\n\nFrom GitHub:\n\n```\npip install git+https://github.com/mntusr/voit\n```\n\n# Usage\n\nThe simplest example of using VOIT looks like this:\n\n```python\nimport torch\nimport numpy as np\nimport voit\nfrom pathlib import Path\n\n# the image to which the object should be inserted\nrgb_image: np.ndarray = ...\n\n# the projection matrix of the camera\nt_proj_mat: np.ndarray = ...\n\n# where you want to insert the object\nthe_pixel_of_the_origin_of_the_inserted_object: voit.Vec2i = ...\nthe_depth_at_the_pixel_where_the_object_is_inserted: float = ...\n\n# the normal vector of the previous surface\nthe_normal_of_the_surface_on_which_the_object_is_inserted = voit.Vec3 = ...\n\ninserter = voit.Inserter(\n    t_proj_mat=t_proj_mat,\n    floor_proxy_size=voit.Vec2(5, 5), # good default for most cases\n    im_size=voit.Vec2i(image.shape[2], image.shape[1]),\n    shadow_map_size=1024, # good default for most cases\n    pt_device=torch.device(\"cuda\")\n)\n\ntry:\n    # the object to insert\n    obj = inserter.load_model(Path(\"mymodel.glb\"))\n\n    result = inserter.insert(\n        input_im=image,\n        input_im_linear=False,\n        output_im_linear=False,\n        pos_px=the_pixel_of_the_origin_of_the_inserted_object,\n        pos_depth=the_depth_at_the_pixel_where_the_object_is_inserted,\n        normal_vs=the_normal_of_the_surface_on_which_the_object_is_inserted,\n        obj=obj,\n    )\nfinally:\n    inserter.destroy()\n\n# the image you made \ud83d\ude01\nresulting_image = result.im\n```\n\n# How to cite\n\nTBD\n",
    "bugtrack_url": null,
    "license": "MIT License",
    "summary": "VOIT = Virtual Object Insertion Tooolkit.",
    "version": "0.1.1",
    "project_urls": {
        "Homepage": "https://github.com/mntusr/voit"
    },
    "split_keywords": [
        "object",
        "insertion"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "015707d0f272a21bcb66fd119d8abcc650c1eab71468150ae8cfa231e0bf1120",
                "md5": "b9fbddac356b9fe1c58e9f42e6dd4fb1",
                "sha256": "ee8d7c3c3ddb3cb71c7cd4fe08316dc1ee6286ce603fabf22d7ea27abe108581"
            },
            "downloads": -1,
            "filename": "voit_inserter-0.1.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "b9fbddac356b9fe1c58e9f42e6dd4fb1",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.10",
            "size": 2008743,
            "upload_time": "2025-02-03T15:29:15",
            "upload_time_iso_8601": "2025-02-03T15:29:15.452972Z",
            "url": "https://files.pythonhosted.org/packages/01/57/07d0f272a21bcb66fd119d8abcc650c1eab71468150ae8cfa231e0bf1120/voit_inserter-0.1.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "d83bf21a4658edfa4728bf08d8eb3ce9385084fbfa0957917eb48f8a6a2376ac",
                "md5": "f85399141a2ff8c65c38a918f00b250e",
                "sha256": "2ea6c27475e0f2a01c10aca59f40a7c53ca0026e4607db17a5dcc160865bb570"
            },
            "downloads": -1,
            "filename": "voit_inserter-0.1.1.tar.gz",
            "has_sig": false,
            "md5_digest": "f85399141a2ff8c65c38a918f00b250e",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.10",
            "size": 2021018,
            "upload_time": "2025-02-03T15:29:19",
            "upload_time_iso_8601": "2025-02-03T15:29:19.276425Z",
            "url": "https://files.pythonhosted.org/packages/d8/3b/f21a4658edfa4728bf08d8eb3ce9385084fbfa0957917eb48f8a6a2376ac/voit_inserter-0.1.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-02-03 15:29:19",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "mntusr",
    "github_project": "voit",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "voit-inserter"
}
        
Elapsed time: 0.89101s