[![Multi-Modality](agorabanner.png)](https://discord.gg/qUtxnK2NMf)
# Vortex Fusion
This is the first ever implementation of a joint Transformer + Mamba + LSTM architecture. The flow is the following: `mamba -> transformer -> lstm` in a loop. Perhaps with more iteration on model design, we can find a better architecture but this architecture is the future.
## install
```bash
$ pip3 install -U vortex-fusion
```
## Usage
```python
import torch
from vortex_fusion import VortexFusion
# Generate random input tensor
x = torch.randint(0, 10000, (1, 10))
# Create an instance of the VortexFusion model with dimension 512
model = VortexFusion(dim=512)
# Pass the input tensor through the model to get the output
output = model(x)
# Print the shape of the output tensor
print(output.shape)
```
# License
MIT
# Citation
Please cite Swarms in your paper or your project if you found it beneficial in any way! Appreciate you.
```bibtex
@misc{swarms,
author = {Gomez, Kye},
title = {{Swarms: The Multi-Agent Collaboration Framework}},
howpublished = {\url{https://github.com/kyegomez/swarms}},
year = {2023},
note = {Accessed: Date}
}
```
Raw data
{
"_id": null,
"home_page": "https://github.com/kyegomez/VortexFusion",
"name": "vortex-fusion",
"maintainer": null,
"docs_url": null,
"requires_python": "<4.0,>=3.10",
"maintainer_email": null,
"keywords": "artificial intelligence, deep learning, optimizers, Prompt Engineering",
"author": "Kye Gomez",
"author_email": "kye@apac.ai",
"download_url": "https://files.pythonhosted.org/packages/e2/51/423c7f958fb07a3bb0dd4fa2c3e988d09ff03143d32ab2c06cfcc33635cb/vortex_fusion-0.0.2.tar.gz",
"platform": null,
"description": "[![Multi-Modality](agorabanner.png)](https://discord.gg/qUtxnK2NMf)\n\n# Vortex Fusion\nThis is the first ever implementation of a joint Transformer + Mamba + LSTM architecture. The flow is the following: `mamba -> transformer -> lstm` in a loop. Perhaps with more iteration on model design, we can find a better architecture but this architecture is the future.\n\n\n## install\n\n```bash\n$ pip3 install -U vortex-fusion\n\n```\n\n## Usage\n```python\nimport torch\nfrom vortex_fusion import VortexFusion\n\n# Generate random input tensor\nx = torch.randint(0, 10000, (1, 10))\n\n# Create an instance of the VortexFusion model with dimension 512\nmodel = VortexFusion(dim=512)\n\n# Pass the input tensor through the model to get the output\noutput = model(x)\n\n# Print the shape of the output tensor\nprint(output.shape)\n```\n\n# License\nMIT\n\n\n# Citation\nPlease cite Swarms in your paper or your project if you found it beneficial in any way! Appreciate you.\n\n```bibtex\n@misc{swarms,\n author = {Gomez, Kye},\n title = {{Swarms: The Multi-Agent Collaboration Framework}},\n howpublished = {\\url{https://github.com/kyegomez/swarms}},\n year = {2023},\n note = {Accessed: Date}\n}\n```\n\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "Paper - Pytorch",
"version": "0.0.2",
"project_urls": {
"Documentation": "https://github.com/kyegomez/VortexFusion",
"Homepage": "https://github.com/kyegomez/VortexFusion",
"Repository": "https://github.com/kyegomez/VortexFusion"
},
"split_keywords": [
"artificial intelligence",
" deep learning",
" optimizers",
" prompt engineering"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "2e2f56b5cf74c3083e02cad9b7a8c4c81c84c715d1346fe774c5fd90bcc722a8",
"md5": "361e8efa285b03c97598ac045a094b27",
"sha256": "b3ccbf4f535ff245b1d75581eb20ad60ce94b0b6f7524817d24bd71f8efd2e39"
},
"downloads": -1,
"filename": "vortex_fusion-0.0.2-py3-none-any.whl",
"has_sig": false,
"md5_digest": "361e8efa285b03c97598ac045a094b27",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": "<4.0,>=3.10",
"size": 4697,
"upload_time": "2024-07-31T05:00:12",
"upload_time_iso_8601": "2024-07-31T05:00:12.117648Z",
"url": "https://files.pythonhosted.org/packages/2e/2f/56b5cf74c3083e02cad9b7a8c4c81c84c715d1346fe774c5fd90bcc722a8/vortex_fusion-0.0.2-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "e251423c7f958fb07a3bb0dd4fa2c3e988d09ff03143d32ab2c06cfcc33635cb",
"md5": "47a7fd2aff4dd4d9a583af81dc08cbe7",
"sha256": "d58f009879e6566c76682f828fd335ae6f3961922a4a0351b2f19ad3c39a5d14"
},
"downloads": -1,
"filename": "vortex_fusion-0.0.2.tar.gz",
"has_sig": false,
"md5_digest": "47a7fd2aff4dd4d9a583af81dc08cbe7",
"packagetype": "sdist",
"python_version": "source",
"requires_python": "<4.0,>=3.10",
"size": 4355,
"upload_time": "2024-07-31T05:00:13",
"upload_time_iso_8601": "2024-07-31T05:00:13.638203Z",
"url": "https://files.pythonhosted.org/packages/e2/51/423c7f958fb07a3bb0dd4fa2c3e988d09ff03143d32ab2c06cfcc33635cb/vortex_fusion-0.0.2.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-07-31 05:00:13",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "kyegomez",
"github_project": "VortexFusion",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"requirements": [
{
"name": "torch",
"specs": []
},
{
"name": "zetascale",
"specs": []
},
{
"name": "swarms",
"specs": []
}
],
"lcname": "vortex-fusion"
}