vortex-fusion


Namevortex-fusion JSON
Version 0.0.2 PyPI version JSON
download
home_pagehttps://github.com/kyegomez/VortexFusion
SummaryPaper - Pytorch
upload_time2024-07-31 05:00:13
maintainerNone
docs_urlNone
authorKye Gomez
requires_python<4.0,>=3.10
licenseMIT
keywords artificial intelligence deep learning optimizers prompt engineering
VCS
bugtrack_url
requirements torch zetascale swarms
Travis-CI No Travis.
coveralls test coverage No coveralls.
            [![Multi-Modality](agorabanner.png)](https://discord.gg/qUtxnK2NMf)

# Vortex Fusion
This is the first ever implementation of a joint Transformer + Mamba + LSTM architecture. The flow is the following: `mamba -> transformer -> lstm` in a loop. Perhaps with more iteration on model design, we can find a better architecture but this architecture is the future.


## install

```bash
$ pip3 install -U vortex-fusion

```

## Usage
```python
import torch
from vortex_fusion import VortexFusion

# Generate random input tensor
x = torch.randint(0, 10000, (1, 10))

# Create an instance of the VortexFusion model with dimension 512
model = VortexFusion(dim=512)

# Pass the input tensor through the model to get the output
output = model(x)

# Print the shape of the output tensor
print(output.shape)
```

# License
MIT


# Citation
Please cite Swarms in your paper or your project if you found it beneficial in any way! Appreciate you.

```bibtex
@misc{swarms,
  author = {Gomez, Kye},
  title = {{Swarms: The Multi-Agent Collaboration Framework}},
  howpublished = {\url{https://github.com/kyegomez/swarms}},
  year = {2023},
  note = {Accessed: Date}
}
```


            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/kyegomez/VortexFusion",
    "name": "vortex-fusion",
    "maintainer": null,
    "docs_url": null,
    "requires_python": "<4.0,>=3.10",
    "maintainer_email": null,
    "keywords": "artificial intelligence, deep learning, optimizers, Prompt Engineering",
    "author": "Kye Gomez",
    "author_email": "kye@apac.ai",
    "download_url": "https://files.pythonhosted.org/packages/e2/51/423c7f958fb07a3bb0dd4fa2c3e988d09ff03143d32ab2c06cfcc33635cb/vortex_fusion-0.0.2.tar.gz",
    "platform": null,
    "description": "[![Multi-Modality](agorabanner.png)](https://discord.gg/qUtxnK2NMf)\n\n# Vortex Fusion\nThis is the first ever implementation of a joint Transformer + Mamba + LSTM architecture. The flow is the following: `mamba -> transformer -> lstm` in a loop. Perhaps with more iteration on model design, we can find a better architecture but this architecture is the future.\n\n\n## install\n\n```bash\n$ pip3 install -U vortex-fusion\n\n```\n\n## Usage\n```python\nimport torch\nfrom vortex_fusion import VortexFusion\n\n# Generate random input tensor\nx = torch.randint(0, 10000, (1, 10))\n\n# Create an instance of the VortexFusion model with dimension 512\nmodel = VortexFusion(dim=512)\n\n# Pass the input tensor through the model to get the output\noutput = model(x)\n\n# Print the shape of the output tensor\nprint(output.shape)\n```\n\n# License\nMIT\n\n\n# Citation\nPlease cite Swarms in your paper or your project if you found it beneficial in any way! Appreciate you.\n\n```bibtex\n@misc{swarms,\n  author = {Gomez, Kye},\n  title = {{Swarms: The Multi-Agent Collaboration Framework}},\n  howpublished = {\\url{https://github.com/kyegomez/swarms}},\n  year = {2023},\n  note = {Accessed: Date}\n}\n```\n\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Paper - Pytorch",
    "version": "0.0.2",
    "project_urls": {
        "Documentation": "https://github.com/kyegomez/VortexFusion",
        "Homepage": "https://github.com/kyegomez/VortexFusion",
        "Repository": "https://github.com/kyegomez/VortexFusion"
    },
    "split_keywords": [
        "artificial intelligence",
        " deep learning",
        " optimizers",
        " prompt engineering"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "2e2f56b5cf74c3083e02cad9b7a8c4c81c84c715d1346fe774c5fd90bcc722a8",
                "md5": "361e8efa285b03c97598ac045a094b27",
                "sha256": "b3ccbf4f535ff245b1d75581eb20ad60ce94b0b6f7524817d24bd71f8efd2e39"
            },
            "downloads": -1,
            "filename": "vortex_fusion-0.0.2-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "361e8efa285b03c97598ac045a094b27",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": "<4.0,>=3.10",
            "size": 4697,
            "upload_time": "2024-07-31T05:00:12",
            "upload_time_iso_8601": "2024-07-31T05:00:12.117648Z",
            "url": "https://files.pythonhosted.org/packages/2e/2f/56b5cf74c3083e02cad9b7a8c4c81c84c715d1346fe774c5fd90bcc722a8/vortex_fusion-0.0.2-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "e251423c7f958fb07a3bb0dd4fa2c3e988d09ff03143d32ab2c06cfcc33635cb",
                "md5": "47a7fd2aff4dd4d9a583af81dc08cbe7",
                "sha256": "d58f009879e6566c76682f828fd335ae6f3961922a4a0351b2f19ad3c39a5d14"
            },
            "downloads": -1,
            "filename": "vortex_fusion-0.0.2.tar.gz",
            "has_sig": false,
            "md5_digest": "47a7fd2aff4dd4d9a583af81dc08cbe7",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": "<4.0,>=3.10",
            "size": 4355,
            "upload_time": "2024-07-31T05:00:13",
            "upload_time_iso_8601": "2024-07-31T05:00:13.638203Z",
            "url": "https://files.pythonhosted.org/packages/e2/51/423c7f958fb07a3bb0dd4fa2c3e988d09ff03143d32ab2c06cfcc33635cb/vortex_fusion-0.0.2.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-07-31 05:00:13",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "kyegomez",
    "github_project": "VortexFusion",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "requirements": [
        {
            "name": "torch",
            "specs": []
        },
        {
            "name": "zetascale",
            "specs": []
        },
        {
            "name": "swarms",
            "specs": []
        }
    ],
    "lcname": "vortex-fusion"
}
        
Elapsed time: 0.29468s