Name | voxelwise-tutorials JSON |
Version |
0.1.9
JSON |
| download |
home_page | None |
Summary | Tools and tutorials for voxelwise modeling |
upload_time | 2025-03-06 00:40:33 |
maintainer | Tom Dupre la Tour |
docs_url | None |
author | None |
requires_python | None |
license | BSD (3-clause) |
keywords |
|
VCS |
|
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
============================
Voxelwise modeling tutorials
============================
|Github| |Python| |License| |Build| |Downloads|
Welcome to the voxelwise modeling tutorial from the
`GallantLab <https://gallantlab.org>`_.
Paper
=====
If you use these tutorials for your work, consider citing the corresponding paper:
Dupré La Tour, T., Visconti di Oleggio Castello, M., & Gallant, J. L. (2024). The Voxelwise Modeling framework: a tutorial introduction to fitting encoding models to fMRI data. https://doi.org/10.31234/osf.io/t975e
You can find a copy of the paper `here <paper/voxelwise_tutorials_paper.pdf>`_.
Tutorials
=========
This repository contains tutorials describing how to use the voxelwise modeling
framework. `Voxelwise modeling
<https://gallantlab.github.io/voxelwise_tutorials/voxelwise_modeling.html>`_ is
a framework to perform functional magnetic resonance imaging (fMRI) data
analysis, fitting encoding models at the voxel level.
To explore these tutorials, one can:
- read the rendered examples in the tutorials
`website <https://gallantlab.github.io/voxelwise_tutorials/>`_ (recommended)
- run the Python scripts (`tutorials <tutorials>`_ directory)
- run the Jupyter notebooks (`tutorials/notebooks <tutorials/notebooks>`_ directory)
- run the merged notebook in
`Colab <https://colab.research.google.com/github/gallantlab/voxelwise_tutorials/blob/main/tutorials/notebooks/shortclips/merged_for_colab.ipynb>`_.
The tutorials are best explored in order, starting with the "Shortclips"
tutorial.
Helper Python package
=====================
To run the tutorials, this repository contains a small Python package
called ``voxelwise_tutorials``, with useful functions to download the
data sets, load the files, process the data, and visualize the results.
Installation
------------
To install the ``voxelwise_tutorials`` package, run:
.. code-block:: bash
pip install voxelwise_tutorials
To also download the tutorial scripts and notebooks, clone the repository via:
.. code-block:: bash
git clone https://github.com/gallantlab/voxelwise_tutorials.git
cd voxelwise_tutorials
pip install .
Developers can also install the package in editable mode via:
.. code-block:: bash
pip install --editable .
Requirements
------------
The package ``voxelwise_tutorials`` has the following dependencies:
`numpy <https://github.com/numpy/numpy>`_,
`scipy <https://github.com/scipy/scipy>`_,
`h5py <https://github.com/h5py/h5py>`_,
`scikit-learn <https://github.com/scikit-learn/scikit-learn>`_,
`matplotlib <https://github.com/matplotlib/matplotlib>`_,
`networkx <https://github.com/networkx/networkx>`_,
`nltk <https://github.com/nltk/nltk>`_,
`pycortex <https://github.com/gallantlab/pycortex>`_,
`himalaya <https://github.com/gallantlab/himalaya>`_,
`pymoten <https://github.com/gallantlab/pymoten>`_,
`datalad <https://github.com/datalad/datalad>`_.
.. |Github| image:: https://img.shields.io/badge/github-voxelwise_tutorials-blue
:target: https://github.com/gallantlab/voxelwise_tutorials
.. |Python| image:: https://img.shields.io/badge/python-3.7%2B-blue
:target: https://www.python.org/downloads/release/python-370
.. |License| image:: https://img.shields.io/badge/License-BSD%203--Clause-blue.svg
:target: https://opensource.org/licenses/BSD-3-Clause
.. |Build| image:: https://github.com/gallantlab/voxelwise_tutorials/actions/workflows/run_tests.yml/badge.svg
:target: https://github.com/gallantlab/voxelwise_tutorials/actions/workflows/run_tests.yml
.. |Downloads| image:: https://pepy.tech/badge/voxelwise_tutorials
:target: https://pepy.tech/project/voxelwise_tutorials
Cite as
=======
If you use one of our packages in your work (``voxelwise_tutorials`` [1]_,
``himalaya`` [2]_, ``pycortex`` [3]_, or ``pymoten`` [4]_), please cite the
corresponding publications:
.. [1] Dupré La Tour, T., Visconti di Oleggio Castello, M., & Gallant, J. L. (2024).
The Voxelwise Modeling framework: a tutorial introduction to fitting encoding models to fMRI data.
https://doi.org/10.31234/osf.io/t975e
.. [2] Dupré La Tour, T., Eickenberg, M., Nunez-Elizalde, A.O., & Gallant, J. L. (2022).
Feature-space selection with banded ridge regression. NeuroImage.
https://doi.org/10.1016/j.neuroimage.2022.119728
.. [3] Gao, J. S., Huth, A. G., Lescroart, M. D., & Gallant, J. L. (2015).
Pycortex: an interactive surface visualizer for fMRI. Frontiers in
neuroinformatics, 23. https://doi.org/10.3389/fninf.2015.00023
.. [4] Nunez-Elizalde, A.O., Deniz, F., Dupré la Tour, T., Visconti di Oleggio
Castello, M., and Gallant, J.L. (2021). pymoten: scientific python package
for computing motion energy features from video. Zenodo.
https://doi.org/10.5281/zenodo.6349625
Raw data
{
"_id": null,
"home_page": null,
"name": "voxelwise-tutorials",
"maintainer": "Tom Dupre la Tour",
"docs_url": null,
"requires_python": null,
"maintainer_email": "tom.dupre-la-tour@m4x.org",
"keywords": null,
"author": null,
"author_email": null,
"download_url": "https://files.pythonhosted.org/packages/83/c7/a428d9042a242fa00fdfa9af45680df887968b694165b037ffc34f418eec/voxelwise_tutorials-0.1.9.tar.gz",
"platform": null,
"description": "============================\nVoxelwise modeling tutorials\n============================\n\n|Github| |Python| |License| |Build| |Downloads|\n\nWelcome to the voxelwise modeling tutorial from the\n`GallantLab <https://gallantlab.org>`_.\n\nPaper\n=====\n\nIf you use these tutorials for your work, consider citing the corresponding paper:\n\nDupr\u00e9 La Tour, T., Visconti di Oleggio Castello, M., & Gallant, J. L. (2024). The Voxelwise Modeling framework: a tutorial introduction to fitting encoding models to fMRI data. https://doi.org/10.31234/osf.io/t975e\n\nYou can find a copy of the paper `here <paper/voxelwise_tutorials_paper.pdf>`_.\n\nTutorials\n=========\n\nThis repository contains tutorials describing how to use the voxelwise modeling\nframework. `Voxelwise modeling\n<https://gallantlab.github.io/voxelwise_tutorials/voxelwise_modeling.html>`_ is\na framework to perform functional magnetic resonance imaging (fMRI) data\nanalysis, fitting encoding models at the voxel level.\n\nTo explore these tutorials, one can:\n\n- read the rendered examples in the tutorials\n `website <https://gallantlab.github.io/voxelwise_tutorials/>`_ (recommended)\n- run the Python scripts (`tutorials <tutorials>`_ directory)\n- run the Jupyter notebooks (`tutorials/notebooks <tutorials/notebooks>`_ directory)\n- run the merged notebook in\n `Colab <https://colab.research.google.com/github/gallantlab/voxelwise_tutorials/blob/main/tutorials/notebooks/shortclips/merged_for_colab.ipynb>`_.\n\nThe tutorials are best explored in order, starting with the \"Shortclips\"\ntutorial.\n\nHelper Python package\n=====================\n\nTo run the tutorials, this repository contains a small Python package\ncalled ``voxelwise_tutorials``, with useful functions to download the\ndata sets, load the files, process the data, and visualize the results.\n\nInstallation\n------------\n\nTo install the ``voxelwise_tutorials`` package, run:\n\n.. code-block:: bash\n\n pip install voxelwise_tutorials\n\n\nTo also download the tutorial scripts and notebooks, clone the repository via:\n\n.. code-block:: bash\n\n git clone https://github.com/gallantlab/voxelwise_tutorials.git\n cd voxelwise_tutorials\n pip install .\n\n\nDevelopers can also install the package in editable mode via:\n\n.. code-block:: bash\n\n pip install --editable .\n\n\nRequirements\n------------\n\nThe package ``voxelwise_tutorials`` has the following dependencies:\n`numpy <https://github.com/numpy/numpy>`_,\n`scipy <https://github.com/scipy/scipy>`_,\n`h5py <https://github.com/h5py/h5py>`_,\n`scikit-learn <https://github.com/scikit-learn/scikit-learn>`_,\n`matplotlib <https://github.com/matplotlib/matplotlib>`_,\n`networkx <https://github.com/networkx/networkx>`_,\n`nltk <https://github.com/nltk/nltk>`_,\n`pycortex <https://github.com/gallantlab/pycortex>`_,\n`himalaya <https://github.com/gallantlab/himalaya>`_,\n`pymoten <https://github.com/gallantlab/pymoten>`_,\n`datalad <https://github.com/datalad/datalad>`_.\n\n\n.. |Github| image:: https://img.shields.io/badge/github-voxelwise_tutorials-blue\n :target: https://github.com/gallantlab/voxelwise_tutorials\n\n.. |Python| image:: https://img.shields.io/badge/python-3.7%2B-blue\n :target: https://www.python.org/downloads/release/python-370\n\n.. |License| image:: https://img.shields.io/badge/License-BSD%203--Clause-blue.svg\n :target: https://opensource.org/licenses/BSD-3-Clause\n\n.. |Build| image:: https://github.com/gallantlab/voxelwise_tutorials/actions/workflows/run_tests.yml/badge.svg\n :target: https://github.com/gallantlab/voxelwise_tutorials/actions/workflows/run_tests.yml\n\n.. |Downloads| image:: https://pepy.tech/badge/voxelwise_tutorials\n :target: https://pepy.tech/project/voxelwise_tutorials\n\n\nCite as\n=======\n\nIf you use one of our packages in your work (``voxelwise_tutorials`` [1]_,\n``himalaya`` [2]_, ``pycortex`` [3]_, or ``pymoten`` [4]_), please cite the\ncorresponding publications:\n\n.. [1] Dupr\u00e9 La Tour, T., Visconti di Oleggio Castello, M., & Gallant, J. L. (2024).\n The Voxelwise Modeling framework: a tutorial introduction to fitting encoding models to fMRI data.\n https://doi.org/10.31234/osf.io/t975e\n\n.. [2] Dupr\u00e9 La Tour, T., Eickenberg, M., Nunez-Elizalde, A.O., & Gallant, J. L. (2022).\n Feature-space selection with banded ridge regression. NeuroImage.\n https://doi.org/10.1016/j.neuroimage.2022.119728\n\n.. [3] Gao, J. S., Huth, A. G., Lescroart, M. D., & Gallant, J. L. (2015).\n Pycortex: an interactive surface visualizer for fMRI. Frontiers in\n neuroinformatics, 23. https://doi.org/10.3389/fninf.2015.00023\n\n.. [4] Nunez-Elizalde, A.O., Deniz, F., Dupr\u00e9 la Tour, T., Visconti di Oleggio\n Castello, M., and Gallant, J.L. (2021). pymoten: scientific python package\n for computing motion energy features from video. Zenodo.\n https://doi.org/10.5281/zenodo.6349625\n",
"bugtrack_url": null,
"license": "BSD (3-clause)",
"summary": "Tools and tutorials for voxelwise modeling",
"version": "0.1.9",
"project_urls": null,
"split_keywords": [],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "83c7a428d9042a242fa00fdfa9af45680df887968b694165b037ffc34f418eec",
"md5": "c7ea347adcd588fb520f11aae5ce2e29",
"sha256": "26719dabcff403b605d5b66d05014107e61610cb64d9ff7010e0f56ff9175c8c"
},
"downloads": -1,
"filename": "voxelwise_tutorials-0.1.9.tar.gz",
"has_sig": false,
"md5_digest": "c7ea347adcd588fb520f11aae5ce2e29",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 24045,
"upload_time": "2025-03-06T00:40:33",
"upload_time_iso_8601": "2025-03-06T00:40:33.323603Z",
"url": "https://files.pythonhosted.org/packages/83/c7/a428d9042a242fa00fdfa9af45680df887968b694165b037ffc34f418eec/voxelwise_tutorials-0.1.9.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-03-06 00:40:33",
"github": false,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"lcname": "voxelwise-tutorials"
}