voxelwise-tutorials


Namevoxelwise-tutorials JSON
Version 0.1.9 PyPI version JSON
download
home_pageNone
SummaryTools and tutorials for voxelwise modeling
upload_time2025-03-06 00:40:33
maintainerTom Dupre la Tour
docs_urlNone
authorNone
requires_pythonNone
licenseBSD (3-clause)
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            ============================
Voxelwise modeling tutorials
============================

|Github| |Python| |License| |Build| |Downloads|

Welcome to the voxelwise modeling tutorial from the
`GallantLab <https://gallantlab.org>`_.

Paper
=====

If you use these tutorials for your work, consider citing the corresponding paper:

Dupré La Tour, T., Visconti di Oleggio Castello, M., & Gallant, J. L. (2024). The Voxelwise Modeling framework: a tutorial introduction to fitting encoding models to fMRI data. https://doi.org/10.31234/osf.io/t975e

You can find a copy of the paper `here <paper/voxelwise_tutorials_paper.pdf>`_.

Tutorials
=========

This repository contains tutorials describing how to use the voxelwise modeling
framework. `Voxelwise modeling
<https://gallantlab.github.io/voxelwise_tutorials/voxelwise_modeling.html>`_ is
a framework to perform functional magnetic resonance imaging (fMRI) data
analysis, fitting encoding models at the voxel level.

To explore these tutorials, one can:

- read the rendered examples in the tutorials
  `website <https://gallantlab.github.io/voxelwise_tutorials/>`_ (recommended)
- run the Python scripts (`tutorials <tutorials>`_ directory)
- run the Jupyter notebooks (`tutorials/notebooks <tutorials/notebooks>`_ directory)
- run the merged notebook in
  `Colab <https://colab.research.google.com/github/gallantlab/voxelwise_tutorials/blob/main/tutorials/notebooks/shortclips/merged_for_colab.ipynb>`_.

The tutorials are best explored in order, starting with the "Shortclips"
tutorial.

Helper Python package
=====================

To run the tutorials, this repository contains a small Python package
called ``voxelwise_tutorials``, with useful functions to download the
data sets, load the files, process the data, and visualize the results.

Installation
------------

To install the ``voxelwise_tutorials`` package, run:

.. code-block:: bash

   pip install voxelwise_tutorials


To also download the tutorial scripts and notebooks, clone the repository via:

.. code-block:: bash

   git clone https://github.com/gallantlab/voxelwise_tutorials.git
   cd voxelwise_tutorials
   pip install .


Developers can also install the package in editable mode via:

.. code-block:: bash

   pip install --editable .


Requirements
------------

The package ``voxelwise_tutorials`` has the following dependencies:
`numpy <https://github.com/numpy/numpy>`_,
`scipy <https://github.com/scipy/scipy>`_,
`h5py <https://github.com/h5py/h5py>`_,
`scikit-learn <https://github.com/scikit-learn/scikit-learn>`_,
`matplotlib <https://github.com/matplotlib/matplotlib>`_,
`networkx <https://github.com/networkx/networkx>`_,
`nltk <https://github.com/nltk/nltk>`_,
`pycortex <https://github.com/gallantlab/pycortex>`_,
`himalaya <https://github.com/gallantlab/himalaya>`_,
`pymoten <https://github.com/gallantlab/pymoten>`_,
`datalad <https://github.com/datalad/datalad>`_.


.. |Github| image:: https://img.shields.io/badge/github-voxelwise_tutorials-blue
   :target: https://github.com/gallantlab/voxelwise_tutorials

.. |Python| image:: https://img.shields.io/badge/python-3.7%2B-blue
   :target: https://www.python.org/downloads/release/python-370

.. |License| image:: https://img.shields.io/badge/License-BSD%203--Clause-blue.svg
   :target: https://opensource.org/licenses/BSD-3-Clause

.. |Build| image:: https://github.com/gallantlab/voxelwise_tutorials/actions/workflows/run_tests.yml/badge.svg
   :target: https://github.com/gallantlab/voxelwise_tutorials/actions/workflows/run_tests.yml

.. |Downloads| image:: https://pepy.tech/badge/voxelwise_tutorials
   :target: https://pepy.tech/project/voxelwise_tutorials


Cite as
=======

If you use one of our packages in your work (``voxelwise_tutorials`` [1]_,
``himalaya`` [2]_, ``pycortex`` [3]_, or ``pymoten`` [4]_), please cite the
corresponding publications:

.. [1] Dupré La Tour, T., Visconti di Oleggio Castello, M., & Gallant, J. L. (2024).
   The Voxelwise Modeling framework: a tutorial introduction to fitting encoding models to fMRI data.
   https://doi.org/10.31234/osf.io/t975e

.. [2] Dupré La Tour, T., Eickenberg, M., Nunez-Elizalde, A.O., & Gallant, J. L. (2022).
   Feature-space selection with banded ridge regression. NeuroImage.
   https://doi.org/10.1016/j.neuroimage.2022.119728

.. [3] Gao, J. S., Huth, A. G., Lescroart, M. D., & Gallant, J. L. (2015).
   Pycortex: an interactive surface visualizer for fMRI. Frontiers in
   neuroinformatics, 23. https://doi.org/10.3389/fninf.2015.00023

.. [4] Nunez-Elizalde, A.O., Deniz, F., Dupré la Tour, T., Visconti di Oleggio
   Castello, M., and Gallant, J.L. (2021). pymoten: scientific python package
   for computing motion energy features from video. Zenodo.
   https://doi.org/10.5281/zenodo.6349625

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "voxelwise-tutorials",
    "maintainer": "Tom Dupre la Tour",
    "docs_url": null,
    "requires_python": null,
    "maintainer_email": "tom.dupre-la-tour@m4x.org",
    "keywords": null,
    "author": null,
    "author_email": null,
    "download_url": "https://files.pythonhosted.org/packages/83/c7/a428d9042a242fa00fdfa9af45680df887968b694165b037ffc34f418eec/voxelwise_tutorials-0.1.9.tar.gz",
    "platform": null,
    "description": "============================\nVoxelwise modeling tutorials\n============================\n\n|Github| |Python| |License| |Build| |Downloads|\n\nWelcome to the voxelwise modeling tutorial from the\n`GallantLab <https://gallantlab.org>`_.\n\nPaper\n=====\n\nIf you use these tutorials for your work, consider citing the corresponding paper:\n\nDupr\u00e9 La Tour, T., Visconti di Oleggio Castello, M., & Gallant, J. L. (2024). The Voxelwise Modeling framework: a tutorial introduction to fitting encoding models to fMRI data. https://doi.org/10.31234/osf.io/t975e\n\nYou can find a copy of the paper `here <paper/voxelwise_tutorials_paper.pdf>`_.\n\nTutorials\n=========\n\nThis repository contains tutorials describing how to use the voxelwise modeling\nframework. `Voxelwise modeling\n<https://gallantlab.github.io/voxelwise_tutorials/voxelwise_modeling.html>`_ is\na framework to perform functional magnetic resonance imaging (fMRI) data\nanalysis, fitting encoding models at the voxel level.\n\nTo explore these tutorials, one can:\n\n- read the rendered examples in the tutorials\n  `website <https://gallantlab.github.io/voxelwise_tutorials/>`_ (recommended)\n- run the Python scripts (`tutorials <tutorials>`_ directory)\n- run the Jupyter notebooks (`tutorials/notebooks <tutorials/notebooks>`_ directory)\n- run the merged notebook in\n  `Colab <https://colab.research.google.com/github/gallantlab/voxelwise_tutorials/blob/main/tutorials/notebooks/shortclips/merged_for_colab.ipynb>`_.\n\nThe tutorials are best explored in order, starting with the \"Shortclips\"\ntutorial.\n\nHelper Python package\n=====================\n\nTo run the tutorials, this repository contains a small Python package\ncalled ``voxelwise_tutorials``, with useful functions to download the\ndata sets, load the files, process the data, and visualize the results.\n\nInstallation\n------------\n\nTo install the ``voxelwise_tutorials`` package, run:\n\n.. code-block:: bash\n\n   pip install voxelwise_tutorials\n\n\nTo also download the tutorial scripts and notebooks, clone the repository via:\n\n.. code-block:: bash\n\n   git clone https://github.com/gallantlab/voxelwise_tutorials.git\n   cd voxelwise_tutorials\n   pip install .\n\n\nDevelopers can also install the package in editable mode via:\n\n.. code-block:: bash\n\n   pip install --editable .\n\n\nRequirements\n------------\n\nThe package ``voxelwise_tutorials`` has the following dependencies:\n`numpy <https://github.com/numpy/numpy>`_,\n`scipy <https://github.com/scipy/scipy>`_,\n`h5py <https://github.com/h5py/h5py>`_,\n`scikit-learn <https://github.com/scikit-learn/scikit-learn>`_,\n`matplotlib <https://github.com/matplotlib/matplotlib>`_,\n`networkx <https://github.com/networkx/networkx>`_,\n`nltk <https://github.com/nltk/nltk>`_,\n`pycortex <https://github.com/gallantlab/pycortex>`_,\n`himalaya <https://github.com/gallantlab/himalaya>`_,\n`pymoten <https://github.com/gallantlab/pymoten>`_,\n`datalad <https://github.com/datalad/datalad>`_.\n\n\n.. |Github| image:: https://img.shields.io/badge/github-voxelwise_tutorials-blue\n   :target: https://github.com/gallantlab/voxelwise_tutorials\n\n.. |Python| image:: https://img.shields.io/badge/python-3.7%2B-blue\n   :target: https://www.python.org/downloads/release/python-370\n\n.. |License| image:: https://img.shields.io/badge/License-BSD%203--Clause-blue.svg\n   :target: https://opensource.org/licenses/BSD-3-Clause\n\n.. |Build| image:: https://github.com/gallantlab/voxelwise_tutorials/actions/workflows/run_tests.yml/badge.svg\n   :target: https://github.com/gallantlab/voxelwise_tutorials/actions/workflows/run_tests.yml\n\n.. |Downloads| image:: https://pepy.tech/badge/voxelwise_tutorials\n   :target: https://pepy.tech/project/voxelwise_tutorials\n\n\nCite as\n=======\n\nIf you use one of our packages in your work (``voxelwise_tutorials`` [1]_,\n``himalaya`` [2]_, ``pycortex`` [3]_, or ``pymoten`` [4]_), please cite the\ncorresponding publications:\n\n.. [1] Dupr\u00e9 La Tour, T., Visconti di Oleggio Castello, M., & Gallant, J. L. (2024).\n   The Voxelwise Modeling framework: a tutorial introduction to fitting encoding models to fMRI data.\n   https://doi.org/10.31234/osf.io/t975e\n\n.. [2] Dupr\u00e9 La Tour, T., Eickenberg, M., Nunez-Elizalde, A.O., & Gallant, J. L. (2022).\n   Feature-space selection with banded ridge regression. NeuroImage.\n   https://doi.org/10.1016/j.neuroimage.2022.119728\n\n.. [3] Gao, J. S., Huth, A. G., Lescroart, M. D., & Gallant, J. L. (2015).\n   Pycortex: an interactive surface visualizer for fMRI. Frontiers in\n   neuroinformatics, 23. https://doi.org/10.3389/fninf.2015.00023\n\n.. [4] Nunez-Elizalde, A.O., Deniz, F., Dupr\u00e9 la Tour, T., Visconti di Oleggio\n   Castello, M., and Gallant, J.L. (2021). pymoten: scientific python package\n   for computing motion energy features from video. Zenodo.\n   https://doi.org/10.5281/zenodo.6349625\n",
    "bugtrack_url": null,
    "license": "BSD (3-clause)",
    "summary": "Tools and tutorials for voxelwise modeling",
    "version": "0.1.9",
    "project_urls": null,
    "split_keywords": [],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "83c7a428d9042a242fa00fdfa9af45680df887968b694165b037ffc34f418eec",
                "md5": "c7ea347adcd588fb520f11aae5ce2e29",
                "sha256": "26719dabcff403b605d5b66d05014107e61610cb64d9ff7010e0f56ff9175c8c"
            },
            "downloads": -1,
            "filename": "voxelwise_tutorials-0.1.9.tar.gz",
            "has_sig": false,
            "md5_digest": "c7ea347adcd588fb520f11aae5ce2e29",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 24045,
            "upload_time": "2025-03-06T00:40:33",
            "upload_time_iso_8601": "2025-03-06T00:40:33.323603Z",
            "url": "https://files.pythonhosted.org/packages/83/c7/a428d9042a242fa00fdfa9af45680df887968b694165b037ffc34f418eec/voxelwise_tutorials-0.1.9.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-03-06 00:40:33",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "voxelwise-tutorials"
}
        
Elapsed time: 0.84321s