waterbear


Namewaterbear JSON
Version 2.6.8 PyPI version JSON
download
home_pagehttps://github.com/episodeyang/waterbear
SummaryA utility that makes it easy to use dot notation with python dictionaries
upload_time2023-09-03 18:38:06
maintainer
docs_urlNone
authorGe Yang
requires_python
license
keywords waterbear dict dot-notation
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            .. figure:: https://github.com/episodeyang/waterbear/blob/master/figures/waterbear_resized.jpg?raw=true
   :width: 355px
   :height: 266px
   :scale: 50%
   :alt: waterbear_is_a_bear

   waterbear_is_a_bear

``waterbear``, A Base Classs That Makes Python Dictionary Accessible With The Dot Notation, Recursively and with Default Values
===============================================================================================================================

Now introducing the smallest bear! **Waterbear**.

Waterbear makes it easy to use python dictionaries with dot notation!

What does ``Waterbear``:bear: do?
---------------------------------

``Waterbear`` is like ``defaultdict`` + ``SimpleNameSpace`` +
``namedtuples``.

``Waterbear`` is similar in usage to ``namedtuples`` or ``recordtypes``,
but it is not a tuple or array type but a dictionary. The distinction is
that ``Waterbear`` attributes are accessible via ``key`` strings instead
of index numbers.

``Waterbear`` is more similar to ``types.SimpleNamespace``. However, a
major difference is that ``Waterbear`` enables:

-  setting default values via a ``default_factory`` during instantiation
-  all attributes are recognized by IDE’s static type-checking so they
   have auto-completion without having to be used first.
-  work recursively

Now with all of these three, there isn’t an alternative solution
available. libraries like ``Munch`` has bad support for pythonic idioms.
In this case ``Waterbear`` allows you to:

-  use ``vars(bear)`` to convert the bear object into a dictionary.
-  use ``dict(bear)`` for the same purpose
-  use ``print(bear)`` and get a dictionary string
-  … all methods that are available in a python ``dict`` object

TODOs
-----

-  ☐ fix class extension usage pattern
-  ☐ [STRIKEOUT:merge ``python2.7`` version with ``python3``]
-  ☐ [STRIKEOUT:make another package called ``tardigrade``]

Installation
------------

.. code-block:: python

   pip install waterbear

Usage
-----

For more usage examples, take a look at the
`test.py <https://github.com/episodeyang/waterbear/blob/master/waterbear/test_waterbear.py>`__!

There are two classes, the ``Bear`` and the ``DefaultBear``. Default
Bear allows you to pass in a default factory as the first argument.
``Bear`` allows you do do so via a keyword argument ``__default``

Example usage below:

.. code-block:: python

   # Waterbear is a bear!
   from waterbear import Bear

   waterbear = Bear(**{"key": 100})
   assert waterbear.key == 100, 'now waterbear.key is accessible!'
   assert waterbear['key'] == 100, 'item access syntax is also supported!'

Similar to ``collection.defaultdict``, there is ``DefaultBear``
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

.. code-block:: python

   bear = DefaultBear(None, a=10, b=100)
   assert vars(bear) == {'a': 10, 'b': 100}

   assert bear.does_not_exist is None, "default value works"

DefaultBear like ``defaultdict``
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

You can use the ``DefaultBear`` class and pass in a default factor as
the first parameter.

.. code-block:: python

   bear = DefaultBear(tuple, a=10, b=100)
   assert bear.does_not_exist is (), "default factory also works!"

You can also use it with ``vars``, ``str``, ``print(repr)``, ``dict`` etc.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

.. code-block:: python

   bear = Bear(a=10, b=100)
   assert str(bear) == "{'a': 10, 'b': 100}"
   assert dir(bear) == ['a', 'b']
   assert list(iter(bear)) == ['a', 'b']
   assert dict(bear) == {'a': 10, 'b': 100}

As Bool in Condition Logic
~~~~~~~~~~~~~~~~~~~~~~~~~~

When used in conditional logic, ``Bear`` and ``DefaultBear`` behaves
exactly like an ordinary dictionary!

.. code-block:: python

   def test_dict_comparison():
       bear = Bear()
       assert not {}, 'empty dictionary are treated as False value.'
       assert not bear, 'bear should be treated as False value too!'

Using with Pickle
~~~~~~~~~~~~~~~~~

When using with default factories, only non-callables are picklable.

.. code-block:: python

   def test_pickle_setstate_getstate():
       # create a default bear with a default factory
       bear = DefaultBear('hey', a=10, b=100)
       pickle_string = pickle.dumps(bear)
       bear_reborn = pickle.loads(pickle_string)
       assert type(bear_reborn) == DefaultBear
       assert vars(bear_reborn) == {'a': 10, 'b': 100}

       bear = DefaultBear(lambda: 'hey', a=10, b=100)
       function_fails = False
       try:
           pickle.dumps(bear)
       except AttributeError as e:
           function_fails = True
       assert function_fails

Using deepcopy
~~~~~~~~~~~~~~

You can just do ``copy.deepcopy(bear)``!

.. code-block:: python

   def test_deepcopy():
       from copy import deepcopy
       original = Bear(a=1, b={'ha': 0})
       copy = deepcopy(original)
       copy.b.ha += 1
       assert copy.b.ha == 1
       assert original.b.ha == 0

As A Base Class
~~~~~~~~~~~~~~~

Waterbear is completely rewritten to play well with class extension!

.. code-block:: python

   class ExtendBear(Bear):
       @property
       def _hidden_stuff(self):
           return "._hidden_stuff"

       @property
       def __mangled_stuff(self):
           return ".__mangled_stuff"

       @property
       def __dict__(self):
           return ".__dict__"

   e = ExtendBear()
   assert e.__dict__ == ".__dict__"
   assert e._hidden_stuff == '._hidden_stuff'
   assert e._ExtendBear__mangled_stuff == ".__mangled_stuff"

Order Preserving SimpleNamespace
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

In tensorflow, you frequently need order preserving namespaces that you
can use for ``sess.run([tensors...``. We built ``OrderedBear`` exactly
for this purpose. It is an extension of the ``types.SimpleNamespace``
class.

::

   # First declare the typings (namespace) for your model
   class Reporting:
       loss=None
       entropy=None
       mean_kl=None

   # Now, you can instantiate this with new values

   ... inside model

       r = Reporting(entropy=-5, loss=1)
       # Notice that 1. we are putting values in out-of-order, and 2. We are missing `mean_kl` in our construction.

       tems = r.items()
       assert items[0] == ('loss', 1), 'order follows class declaration.'
       assert items[1] == ('entropy', -5), 'entropy goes after loss even though this is the second atrribute'
       assert items[2] == ('mean_kl', None), 'undefined falls back to the default'

       values = r.values()
       assert values[0] == 1, 'order follows class declaration.'
       assert values[1] == -5, 'entropy goes after loss even though this is the second atrribute'
       assert values[2] == None, 'undefined falls back to the default'

       keys = r.keys()
       assert keys[0] == 'loss', 'order follows class declaration.'
       assert keys[1] == 'entropy', 'entropy goes after loss even though this is the second atrribute'
       assert keys[2] == 'mean_kl', 'undefined falls back to the default'

More Usages Could Be Found in The Tests!
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

For more usage examples, take a look at
`test.py <https://github.com/episodeyang/waterbear/blob/master/waterbear/test_waterbear.py>`__.

.. code-block:: python

   test_dict = {
       'a': 0,
       'b': 1
   }

   # Use spread operators to construct with a dictionary!
   test_args = Bear(**test_dict)
   assert test_args.a == 0
   assert test_args.b == 1
   # the value should now be accessible through the key name.
   test_args.haha = 0
   assert test_args.haha == 0


   # You can also use a nested dictionary.
   test_args.haha = {'a': 1}
   assert test_args.haha != {'a': 1}
   assert vars(test_args.haha) == {'a': 1}
   assert test_args.haha.a == 1
   assert test_args.__dict__['haha']['a'] == 1
   assert vars(test_args)['haha']['a'] == 1
   assert str(test_args) == "{'a': 0, 'b': 1, 'haha': {'a': 1}}", \
       'test_args should be this value "{\'a\': 0, \'b\': 1, \'haha\': {\'a\': 1}}"'

   # To set recursion to false, use this `__recursive` parameter.
   test_args = Bear(__recursive=False, **test_dict)
   assert test_args.__is_recursive == False
   assert test_args.a == 0
   assert test_args.b == 1
   test_args.haha = {'a': 1}
   assert test_args.haha['a'] == 1
   assert test_args.haha == {'a': 1}

   # Some other usage patterns
   test_args = Bear(**test_dict, **{'ha': 'ha', 'no': 'no'})
   assert test_args.ha == 'ha', 'key ha should be ha'

To Develop
----------

.. code-block:: python

   git clone https://github.com/episodeyang/waterbear.git
   cd waterbear
   make dev

This ``make dev`` command should build the wheel and install it in your
current python environment. Take a look at the
`https://github.com/episodeyang/waterbear/blob/master/Makefile <https://github.com/episodeyang/waterbear/blob/master/Makefile>`__ for details.

**To publish**, first update the version number, then do:

.. code-block:: bash

   make publish

\* image credit goes to BBC `waterbear: The Smallest
Bear! <http://www.bbc.com/earth/story/20150313-the-toughest-animals-on-earth>`__
😛 |tardigrade|

.. |tardigrade| image:: https://github.com/episodeyang/waterbear/blob/master/figures/waterbear_2_resized.jpg?raw=true
   :width: 355px
   :height: 266px
   :scale: 50%



            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/episodeyang/waterbear",
    "name": "waterbear",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "waterbear,dict,dot-notation",
    "author": "Ge Yang",
    "author_email": "yangge1987@gmail.com",
    "download_url": "",
    "platform": null,
    "description": ".. figure:: https://github.com/episodeyang/waterbear/blob/master/figures/waterbear_resized.jpg?raw=true\n   :width: 355px\n   :height: 266px\n   :scale: 50%\n   :alt: waterbear_is_a_bear\n\n   waterbear_is_a_bear\n\n``waterbear``, A Base Classs That Makes Python Dictionary Accessible With The Dot Notation, Recursively and with Default Values\n===============================================================================================================================\n\nNow introducing the smallest bear! **Waterbear**.\n\nWaterbear makes it easy to use python dictionaries with dot notation!\n\nWhat does ``Waterbear``:bear: do?\n---------------------------------\n\n``Waterbear`` is like ``defaultdict`` + ``SimpleNameSpace`` +\n``namedtuples``.\n\n``Waterbear`` is similar in usage to ``namedtuples`` or ``recordtypes``,\nbut it is not a tuple or array type but a dictionary. The distinction is\nthat ``Waterbear`` attributes are accessible via ``key`` strings instead\nof index numbers.\n\n``Waterbear`` is more similar to ``types.SimpleNamespace``. However, a\nmajor difference is that ``Waterbear`` enables:\n\n-  setting default values via a ``default_factory`` during instantiation\n-  all attributes are recognized by IDE\u2019s static type-checking so they\n   have auto-completion without having to be used first.\n-  work recursively\n\nNow with all of these three, there isn\u2019t an alternative solution\navailable. libraries like ``Munch`` has bad support for pythonic idioms.\nIn this case ``Waterbear`` allows you to:\n\n-  use ``vars(bear)`` to convert the bear object into a dictionary.\n-  use ``dict(bear)`` for the same purpose\n-  use ``print(bear)`` and get a dictionary string\n-  \u2026 all methods that are available in a python ``dict`` object\n\nTODOs\n-----\n\n-  \u2610 fix class extension usage pattern\n-  \u2610 [STRIKEOUT:merge ``python2.7`` version with ``python3``]\n-  \u2610 [STRIKEOUT:make another package called ``tardigrade``]\n\nInstallation\n------------\n\n.. code-block:: python\n\n   pip install waterbear\n\nUsage\n-----\n\nFor more usage examples, take a look at the\n`test.py <https://github.com/episodeyang/waterbear/blob/master/waterbear/test_waterbear.py>`__!\n\nThere are two classes, the ``Bear`` and the ``DefaultBear``. Default\nBear allows you to pass in a default factory as the first argument.\n``Bear`` allows you do do so via a keyword argument ``__default``\n\nExample usage below:\n\n.. code-block:: python\n\n   # Waterbear is a bear!\n   from waterbear import Bear\n\n   waterbear = Bear(**{\"key\": 100})\n   assert waterbear.key == 100, 'now waterbear.key is accessible!'\n   assert waterbear['key'] == 100, 'item access syntax is also supported!'\n\nSimilar to ``collection.defaultdict``, there is ``DefaultBear``\n~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n\n.. code-block:: python\n\n   bear = DefaultBear(None, a=10, b=100)\n   assert vars(bear) == {'a': 10, 'b': 100}\n\n   assert bear.does_not_exist is None, \"default value works\"\n\nDefaultBear like ``defaultdict``\n~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n\nYou can use the ``DefaultBear`` class and pass in a default factor as\nthe first parameter.\n\n.. code-block:: python\n\n   bear = DefaultBear(tuple, a=10, b=100)\n   assert bear.does_not_exist is (), \"default factory also works!\"\n\nYou can also use it with ``vars``, ``str``, ``print(repr)``, ``dict`` etc.\n~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n\n.. code-block:: python\n\n   bear = Bear(a=10, b=100)\n   assert str(bear) == \"{'a': 10, 'b': 100}\"\n   assert dir(bear) == ['a', 'b']\n   assert list(iter(bear)) == ['a', 'b']\n   assert dict(bear) == {'a': 10, 'b': 100}\n\nAs Bool in Condition Logic\n~~~~~~~~~~~~~~~~~~~~~~~~~~\n\nWhen used in conditional logic, ``Bear`` and ``DefaultBear`` behaves\nexactly like an ordinary dictionary!\n\n.. code-block:: python\n\n   def test_dict_comparison():\n       bear = Bear()\n       assert not {}, 'empty dictionary are treated as False value.'\n       assert not bear, 'bear should be treated as False value too!'\n\nUsing with Pickle\n~~~~~~~~~~~~~~~~~\n\nWhen using with default factories, only non-callables are picklable.\n\n.. code-block:: python\n\n   def test_pickle_setstate_getstate():\n       # create a default bear with a default factory\n       bear = DefaultBear('hey', a=10, b=100)\n       pickle_string = pickle.dumps(bear)\n       bear_reborn = pickle.loads(pickle_string)\n       assert type(bear_reborn) == DefaultBear\n       assert vars(bear_reborn) == {'a': 10, 'b': 100}\n\n       bear = DefaultBear(lambda: 'hey', a=10, b=100)\n       function_fails = False\n       try:\n           pickle.dumps(bear)\n       except AttributeError as e:\n           function_fails = True\n       assert function_fails\n\nUsing deepcopy\n~~~~~~~~~~~~~~\n\nYou can just do ``copy.deepcopy(bear)``!\n\n.. code-block:: python\n\n   def test_deepcopy():\n       from copy import deepcopy\n       original = Bear(a=1, b={'ha': 0})\n       copy = deepcopy(original)\n       copy.b.ha += 1\n       assert copy.b.ha == 1\n       assert original.b.ha == 0\n\nAs A Base Class\n~~~~~~~~~~~~~~~\n\nWaterbear is completely rewritten to play well with class extension!\n\n.. code-block:: python\n\n   class ExtendBear(Bear):\n       @property\n       def _hidden_stuff(self):\n           return \"._hidden_stuff\"\n\n       @property\n       def __mangled_stuff(self):\n           return \".__mangled_stuff\"\n\n       @property\n       def __dict__(self):\n           return \".__dict__\"\n\n   e = ExtendBear()\n   assert e.__dict__ == \".__dict__\"\n   assert e._hidden_stuff == '._hidden_stuff'\n   assert e._ExtendBear__mangled_stuff == \".__mangled_stuff\"\n\nOrder Preserving SimpleNamespace\n~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n\nIn tensorflow, you frequently need order preserving namespaces that you\ncan use for ``sess.run([tensors...``. We built ``OrderedBear`` exactly\nfor this purpose. It is an extension of the ``types.SimpleNamespace``\nclass.\n\n::\n\n   # First declare the typings (namespace) for your model\n   class Reporting:\n       loss=None\n       entropy=None\n       mean_kl=None\n\n   # Now, you can instantiate this with new values\n\n   ... inside model\n\n       r = Reporting(entropy=-5, loss=1)\n       # Notice that 1. we are putting values in out-of-order, and 2. We are missing `mean_kl` in our construction.\n\n       tems = r.items()\n       assert items[0] == ('loss', 1), 'order follows class declaration.'\n       assert items[1] == ('entropy', -5), 'entropy goes after loss even though this is the second atrribute'\n       assert items[2] == ('mean_kl', None), 'undefined falls back to the default'\n\n       values = r.values()\n       assert values[0] == 1, 'order follows class declaration.'\n       assert values[1] == -5, 'entropy goes after loss even though this is the second atrribute'\n       assert values[2] == None, 'undefined falls back to the default'\n\n       keys = r.keys()\n       assert keys[0] == 'loss', 'order follows class declaration.'\n       assert keys[1] == 'entropy', 'entropy goes after loss even though this is the second atrribute'\n       assert keys[2] == 'mean_kl', 'undefined falls back to the default'\n\nMore Usages Could Be Found in The Tests!\n~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n\nFor more usage examples, take a look at\n`test.py <https://github.com/episodeyang/waterbear/blob/master/waterbear/test_waterbear.py>`__.\n\n.. code-block:: python\n\n   test_dict = {\n       'a': 0,\n       'b': 1\n   }\n\n   # Use spread operators to construct with a dictionary!\n   test_args = Bear(**test_dict)\n   assert test_args.a == 0\n   assert test_args.b == 1\n   # the value should now be accessible through the key name.\n   test_args.haha = 0\n   assert test_args.haha == 0\n\n\n   # You can also use a nested dictionary.\n   test_args.haha = {'a': 1}\n   assert test_args.haha != {'a': 1}\n   assert vars(test_args.haha) == {'a': 1}\n   assert test_args.haha.a == 1\n   assert test_args.__dict__['haha']['a'] == 1\n   assert vars(test_args)['haha']['a'] == 1\n   assert str(test_args) == \"{'a': 0, 'b': 1, 'haha': {'a': 1}}\", \\\n       'test_args should be this value \"{\\'a\\': 0, \\'b\\': 1, \\'haha\\': {\\'a\\': 1}}\"'\n\n   # To set recursion to false, use this `__recursive` parameter.\n   test_args = Bear(__recursive=False, **test_dict)\n   assert test_args.__is_recursive == False\n   assert test_args.a == 0\n   assert test_args.b == 1\n   test_args.haha = {'a': 1}\n   assert test_args.haha['a'] == 1\n   assert test_args.haha == {'a': 1}\n\n   # Some other usage patterns\n   test_args = Bear(**test_dict, **{'ha': 'ha', 'no': 'no'})\n   assert test_args.ha == 'ha', 'key ha should be ha'\n\nTo Develop\n----------\n\n.. code-block:: python\n\n   git clone https://github.com/episodeyang/waterbear.git\n   cd waterbear\n   make dev\n\nThis ``make dev`` command should build the wheel and install it in your\ncurrent python environment. Take a look at the\n`https://github.com/episodeyang/waterbear/blob/master/Makefile <https://github.com/episodeyang/waterbear/blob/master/Makefile>`__ for details.\n\n**To publish**, first update the version number, then do:\n\n.. code-block:: bash\n\n   make publish\n\n\\* image credit goes to BBC `waterbear: The Smallest\nBear! <http://www.bbc.com/earth/story/20150313-the-toughest-animals-on-earth>`__\n\ud83d\ude1b |tardigrade|\n\n.. |tardigrade| image:: https://github.com/episodeyang/waterbear/blob/master/figures/waterbear_2_resized.jpg?raw=true\n   :width: 355px\n   :height: 266px\n   :scale: 50%\n\n\n",
    "bugtrack_url": null,
    "license": "",
    "summary": "A utility that makes it easy to use dot notation with python dictionaries",
    "version": "2.6.8",
    "project_urls": {
        "Homepage": "https://github.com/episodeyang/waterbear"
    },
    "split_keywords": [
        "waterbear",
        "dict",
        "dot-notation"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "a63cf1b41d47e038e922ae751d2dbddea1c5744ad79ab14d9bbec983d85afd0f",
                "md5": "6e2e92df8d232f37ad255ab23fa581e0",
                "sha256": "e7c42bae01f4287eedde5bb71ab4671e93ca10edf3ebfba09a432ac4bace3f59"
            },
            "downloads": -1,
            "filename": "waterbear-2.6.8-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "6e2e92df8d232f37ad255ab23fa581e0",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 9791,
            "upload_time": "2023-09-03T18:38:06",
            "upload_time_iso_8601": "2023-09-03T18:38:06.505337Z",
            "url": "https://files.pythonhosted.org/packages/a6/3c/f1b41d47e038e922ae751d2dbddea1c5744ad79ab14d9bbec983d85afd0f/waterbear-2.6.8-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-09-03 18:38:06",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "episodeyang",
    "github_project": "waterbear",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "waterbear"
}
        
Elapsed time: 0.10768s