wdm-wavelet


Namewdm-wavelet JSON
Version 0.2.2 PyPI version JSON
download
home_pagehttps://git.ligo.org/yumeng.xu/wdm-wavelet
SummaryA Python package for Wilson-Daubechies-Meyer (WDM) wavelet from coherentWaveBurst
upload_time2024-07-14 09:26:41
maintainerNone
docs_urlNone
authorYumeng Xu
requires_python>=3.8
licenseNone
keywords ligo wavelet gravitational waves burst dwt wdm wilson-daubechies-meyer cwb
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # WDM wavelet transform

This package hosts the python version of WDM wavelet used in coherentWaveBurst(cWB) search.

## Installation

```bash
pip install wdm-wavelet
```

## Example

Generate a timeseries waveform
```python
from pycbc.waveform import get_td_waveform
import matplotlib.pyplot as plt

hp, hc = get_td_waveform(approximant="IMRPhenomTPHM",
                         mass1=20,
                         mass2=20,
                         spin1z=0.9,
                         spin2z=0.4,
                         inclination=1.23,
                         coa_phase=2.45,
                         distance=100,
                         delta_t=1.0/2048,
                         f_lower=20)
```

Apply WDM wavelet transform
```python
from wdm_wavelet.wdm import WDM

wdm = WDM(32, 64, 6, 10)

tf_map = wdm.t2w(hp)

tf_map.plot_energy()
```

Inverse WDM wavelet transform
```python
ts = wdm.w2t(tf_map)

plt.plot(ts)
```

For more examples, please refer to the [example notebook](https://git.ligo.org/yumeng.xu/wdm-wavelet/-/blob/main/notebook/transform_GW.ipynb).

            

Raw data

            {
    "_id": null,
    "home_page": "https://git.ligo.org/yumeng.xu/wdm-wavelet",
    "name": "wdm-wavelet",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.8",
    "maintainer_email": null,
    "keywords": "ligo, wavelet, gravitational waves, burst, DWT, WDM, Wilson-Daubechies-Meyer, cWB",
    "author": "Yumeng Xu",
    "author_email": "The PycWB team <yumeng.xu@ligo.org>",
    "download_url": "https://files.pythonhosted.org/packages/2c/d4/d8eec145dad9d2b69d7e8ddd7af03efc7e412ec197d0e98c8f1c86f71549/wdm_wavelet-0.2.2.tar.gz",
    "platform": null,
    "description": "# WDM wavelet transform\n\nThis package hosts the python version of WDM wavelet used in coherentWaveBurst(cWB) search.\n\n## Installation\n\n```bash\npip install wdm-wavelet\n```\n\n## Example\n\nGenerate a timeseries waveform\n```python\nfrom pycbc.waveform import get_td_waveform\nimport matplotlib.pyplot as plt\n\nhp, hc = get_td_waveform(approximant=\"IMRPhenomTPHM\",\n                         mass1=20,\n                         mass2=20,\n                         spin1z=0.9,\n                         spin2z=0.4,\n                         inclination=1.23,\n                         coa_phase=2.45,\n                         distance=100,\n                         delta_t=1.0/2048,\n                         f_lower=20)\n```\n\nApply WDM wavelet transform\n```python\nfrom wdm_wavelet.wdm import WDM\n\nwdm = WDM(32, 64, 6, 10)\n\ntf_map = wdm.t2w(hp)\n\ntf_map.plot_energy()\n```\n\nInverse WDM wavelet transform\n```python\nts = wdm.w2t(tf_map)\n\nplt.plot(ts)\n```\n\nFor more examples, please refer to the [example notebook](https://git.ligo.org/yumeng.xu/wdm-wavelet/-/blob/main/notebook/transform_GW.ipynb).\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "A Python package for Wilson-Daubechies-Meyer (WDM) wavelet from coherentWaveBurst",
    "version": "0.2.2",
    "project_urls": {
        "Homepage": "https://git.ligo.org/yumeng.xu/wdm-wavelet"
    },
    "split_keywords": [
        "ligo",
        " wavelet",
        " gravitational waves",
        " burst",
        " dwt",
        " wdm",
        " wilson-daubechies-meyer",
        " cwb"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "2cd4d8eec145dad9d2b69d7e8ddd7af03efc7e412ec197d0e98c8f1c86f71549",
                "md5": "eaccd3d683f55bc1ebc6f5185f5fc08d",
                "sha256": "3f5f4d9dfff103fd3572d636d8825f2b9893813e5cafe2e017322fcefec62a66"
            },
            "downloads": -1,
            "filename": "wdm_wavelet-0.2.2.tar.gz",
            "has_sig": false,
            "md5_digest": "eaccd3d683f55bc1ebc6f5185f5fc08d",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8",
            "size": 267993,
            "upload_time": "2024-07-14T09:26:41",
            "upload_time_iso_8601": "2024-07-14T09:26:41.221816Z",
            "url": "https://files.pythonhosted.org/packages/2c/d4/d8eec145dad9d2b69d7e8ddd7af03efc7e412ec197d0e98c8f1c86f71549/wdm_wavelet-0.2.2.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-07-14 09:26:41",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "wdm-wavelet"
}
        
Elapsed time: 1.44844s