weather-swarm


Nameweather-swarm JSON
Version 0.0.7 PyPI version JSON
download
home_pagehttps://github.com/baronservices/weatherman_agent
SummaryWeather Swarm - Pytorch
upload_time2024-06-13 18:24:01
maintainerNone
docs_urlNone
authorKye Gomez
requires_python<4.0,>=3.10
licenseMIT
keywords artificial intelligence deep learning optimizers prompt engineering
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Baron Weather

## Overview
Baron Weather is a sophisticated toolset designed to enable real-time querying of weather data using the Baron API. It utilizes a swarm of autonomous agents to handle concurrent data requests, optimizing for efficiency and accuracy in weather data retrieval and analysis.

## Features
Baron Weather includes the following key features:
- **Real-time Weather Data Access**: Instantly fetch and analyze weather conditions using the Baron API.
- **Autonomous Agents**: A swarm system for handling multiple concurrent API queries efficiently.
- **Data Visualization**: Tools for visualizing complex meteorological data for easier interpretation.


## Prerequisites
Before you begin, ensure you have met the following requirements:
- Python 3.10 or newer
- git installed on your machine
- Install packages like swarms

## Installation

There are 2 methods, git cloning which allows you to modify the codebase or pip install for simple usage:

### Pip 
`pip3 install -U weather-swarm`

### Cloning the Repository
To get started with Baron Weather, clone the repository to your local machine using:

```bash
git clone https://github.com/baronservices/weatherman_agent.git
cd weatherman_agent
```

### Setting Up the Environment
Create a Python virtual environment to manage dependencies:

```bash
python -m venv venv
source venv/bin/activate  # On Windows use `venv\Scripts\activate`
```

### Installing Dependencies
Install the necessary Python packages via pip:

```bash
pip install -r requirements.txt
```

## Usage
To start querying the Baron Weather API using the autonomous agents, run:

```bash
python main.py
```

## API

```bash
python3 api.py
```


### Llama3

```python
from swarms import llama3Hosted


# Example usage
llama3 = llama3Hosted(
    model="meta-llama/Meta-Llama-3-8B-Instruct",
    temperature=0.8,
    max_tokens=1000,
    system_prompt="You are a helpful assistant.",
)

completion_generator = llama3.run(
    "create an essay on how to bake chicken"
)

print(completion_generator)

```

# Documentation
- [Llama3Hosted](docs/llama3_hosted.md)

## Contributing
Contributions to Baron Weather are welcome and appreciated. Here's how you can contribute:

1. Fork the Project
2. Create your Feature Branch (`git checkout -b feature/YourAmazingFeature`)
3. Commit your Changes (`git commit -m 'Add some YourAmazingFeature'`)
4. Push to the Branch (`git push origin feature/YourAmazingFeature`)
5. Open a Pull Request


## Tests
To run tests run the following:

`pytest`

## Contact
Project Maintainer - [Kye Gomez](mailto:kye@swarms.world) - [GitHub Profile](https://github.com/baronservices)


# Todo
- [x] Implement the parser and the function calling mapping to execute the functions
- [ ] Then, implement the API server wrapping the hiearchical swarm
- [ ] Then, Deploy on the server 24/7
- [ ] Temperature and forecast of tomorrow


# Requirements
- Simple 
            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/baronservices/weatherman_agent",
    "name": "weather-swarm",
    "maintainer": null,
    "docs_url": null,
    "requires_python": "<4.0,>=3.10",
    "maintainer_email": null,
    "keywords": "artificial intelligence, deep learning, optimizers, Prompt Engineering",
    "author": "Kye Gomez",
    "author_email": "kye@apac.ai",
    "download_url": "https://files.pythonhosted.org/packages/0f/b5/f0590c93dc2244d88325b9a8793dd5b8e75bff35d746e8d548b8a6b076c7/weather_swarm-0.0.7.tar.gz",
    "platform": null,
    "description": "# Baron Weather\n\n## Overview\nBaron Weather is a sophisticated toolset designed to enable real-time querying of weather data using the Baron API. It utilizes a swarm of autonomous agents to handle concurrent data requests, optimizing for efficiency and accuracy in weather data retrieval and analysis.\n\n## Features\nBaron Weather includes the following key features:\n- **Real-time Weather Data Access**: Instantly fetch and analyze weather conditions using the Baron API.\n- **Autonomous Agents**: A swarm system for handling multiple concurrent API queries efficiently.\n- **Data Visualization**: Tools for visualizing complex meteorological data for easier interpretation.\n\n\n## Prerequisites\nBefore you begin, ensure you have met the following requirements:\n- Python 3.10 or newer\n- git installed on your machine\n- Install packages like swarms\n\n## Installation\n\nThere are 2 methods, git cloning which allows you to modify the codebase or pip install for simple usage:\n\n### Pip \n`pip3 install -U weather-swarm`\n\n### Cloning the Repository\nTo get started with Baron Weather, clone the repository to your local machine using:\n\n```bash\ngit clone https://github.com/baronservices/weatherman_agent.git\ncd weatherman_agent\n```\n\n### Setting Up the Environment\nCreate a Python virtual environment to manage dependencies:\n\n```bash\npython -m venv venv\nsource venv/bin/activate  # On Windows use `venv\\Scripts\\activate`\n```\n\n### Installing Dependencies\nInstall the necessary Python packages via pip:\n\n```bash\npip install -r requirements.txt\n```\n\n## Usage\nTo start querying the Baron Weather API using the autonomous agents, run:\n\n```bash\npython main.py\n```\n\n## API\n\n```bash\npython3 api.py\n```\n\n\n### Llama3\n\n```python\nfrom swarms import llama3Hosted\n\n\n# Example usage\nllama3 = llama3Hosted(\n    model=\"meta-llama/Meta-Llama-3-8B-Instruct\",\n    temperature=0.8,\n    max_tokens=1000,\n    system_prompt=\"You are a helpful assistant.\",\n)\n\ncompletion_generator = llama3.run(\n    \"create an essay on how to bake chicken\"\n)\n\nprint(completion_generator)\n\n```\n\n# Documentation\n- [Llama3Hosted](docs/llama3_hosted.md)\n\n## Contributing\nContributions to Baron Weather are welcome and appreciated. Here's how you can contribute:\n\n1. Fork the Project\n2. Create your Feature Branch (`git checkout -b feature/YourAmazingFeature`)\n3. Commit your Changes (`git commit -m 'Add some YourAmazingFeature'`)\n4. Push to the Branch (`git push origin feature/YourAmazingFeature`)\n5. Open a Pull Request\n\n\n## Tests\nTo run tests run the following:\n\n`pytest`\n\n## Contact\nProject Maintainer - [Kye Gomez](mailto:kye@swarms.world) - [GitHub Profile](https://github.com/baronservices)\n\n\n# Todo\n- [x] Implement the parser and the function calling mapping to execute the functions\n- [ ] Then, implement the API server wrapping the hiearchical swarm\n- [ ] Then, Deploy on the server 24/7\n- [ ] Temperature and forecast of tomorrow\n\n\n# Requirements\n- Simple ",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Weather Swarm - Pytorch",
    "version": "0.0.7",
    "project_urls": {
        "Documentation": "https://github.com/baronservices/weatherman_agent",
        "Homepage": "https://github.com/baronservices/weatherman_agent",
        "Repository": "https://github.com/baronservices/weatherman_agent"
    },
    "split_keywords": [
        "artificial intelligence",
        " deep learning",
        " optimizers",
        " prompt engineering"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "46db8f74ef7edca88a87782a65e840571b1ce54d495f85c6d3229ebb447d052f",
                "md5": "cb136963c2dc2429d680d1e21fc2e0d9",
                "sha256": "d7807f4bf06110e8007db3340c933b5ae7ff65669c58a6e2c33763051f061158"
            },
            "downloads": -1,
            "filename": "weather_swarm-0.0.7-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "cb136963c2dc2429d680d1e21fc2e0d9",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": "<4.0,>=3.10",
            "size": 16858,
            "upload_time": "2024-06-13T18:23:59",
            "upload_time_iso_8601": "2024-06-13T18:23:59.208965Z",
            "url": "https://files.pythonhosted.org/packages/46/db/8f74ef7edca88a87782a65e840571b1ce54d495f85c6d3229ebb447d052f/weather_swarm-0.0.7-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "0fb5f0590c93dc2244d88325b9a8793dd5b8e75bff35d746e8d548b8a6b076c7",
                "md5": "383b9720636f384fa553c12ba8b9f7d8",
                "sha256": "f5747c55b47d73b68d55a2410f1b0a0ec448a0b0c63251d561f41799246d160a"
            },
            "downloads": -1,
            "filename": "weather_swarm-0.0.7.tar.gz",
            "has_sig": false,
            "md5_digest": "383b9720636f384fa553c12ba8b9f7d8",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": "<4.0,>=3.10",
            "size": 17049,
            "upload_time": "2024-06-13T18:24:01",
            "upload_time_iso_8601": "2024-06-13T18:24:01.262139Z",
            "url": "https://files.pythonhosted.org/packages/0f/b5/f0590c93dc2244d88325b9a8793dd5b8e75bff35d746e8d548b8a6b076c7/weather_swarm-0.0.7.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-06-13 18:24:01",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "baronservices",
    "github_project": "weatherman_agent",
    "github_not_found": true,
    "lcname": "weather-swarm"
}
        
Elapsed time: 0.31233s