webrtcvad


Namewebrtcvad JSON
Version 2.0.10 PyPI version JSON
download
home_pagehttps://github.com/wiseman/py-webrtcvad
SummaryPython interface to the Google WebRTC Voice Activity Detector (VAD)
upload_time2017-01-07 23:05:18
maintainer
docs_urlNone
authorJohn Wiseman
requires_python
licenseMIT
keywords speechrecognition asr voiceactivitydetection vad webrtc
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI
coveralls test coverage No coveralls.
            .. image:: https://travis-ci.org/wiseman/py-webrtcvad.svg?branch=master
    :target: https://travis-ci.org/wiseman/py-webrtcvad

py-webrtcvad
============

This is a python interface to the WebRTC Voice Activity Detector
(VAD).  It is compatible with Python 2 and Python 3.

A `VAD <https://en.wikipedia.org/wiki/Voice_activity_detection>`_
classifies a piece of audio data as being voiced or unvoiced. It can
be useful for telephony and speech recognition.

The VAD that Google developed for the `WebRTC <https://webrtc.org/>`_
project is reportedly one of the best available, being fast, modern
and free.

How to use it
-------------

0. Install the webrtcvad module::

    pip install webrtcvad

1. Create a ``Vad`` object::

    import webrtcvad
    vad = webrtcvad.Vad()

2. Optionally, set its aggressiveness mode, which is an integer
   between 0 and 3. 0 is the least aggressive about filtering out
   non-speech, 3 is the most aggressive. (You can also set the mode
   when you create the VAD, e.g. ``vad = webrtcvad.Vad(3)``)::

    vad.set_mode(1)

3. Give it a short segment ("frame") of audio. The WebRTC VAD only
   accepts 16-bit mono PCM audio, sampled at 8000, 16000, or 32000 Hz.
   A frame must be either 10, 20, or 30 ms in duration::

    # Run the VAD on 10 ms of silence. The result should be False.
    sample_rate = 16000
    frame_duration = 10  # ms
    frame = b'\x00\x00' * (sample_rate * frame_duration / 1000)
    print 'Contains speech: %s' % (vad.is_speech(frame, sample_rate)


See `example.py
<https://github.com/wiseman/py-webrtcvad/blob/master/example.py>`_ for
a more detailed example that will process a .wav file, find the voiced
segments, and write each one as a separate .wav.


How to run unit tests
---------------------

To run unit tests::

    pip install -e ".[dev]"
    python setup.py test
            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/wiseman/py-webrtcvad",
    "name": "webrtcvad",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "speechrecognition asr voiceactivitydetection vad webrtc",
    "author": "John Wiseman",
    "author_email": "jjwiseman@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/89/34/e2de2d97f3288512b9ea56f92e7452f8207eb5a0096500badf9dfd48f5e6/webrtcvad-2.0.10.tar.gz",
    "platform": "",
    "description": ".. image:: https://travis-ci.org/wiseman/py-webrtcvad.svg?branch=master\n    :target: https://travis-ci.org/wiseman/py-webrtcvad\n\npy-webrtcvad\n============\n\nThis is a python interface to the WebRTC Voice Activity Detector\n(VAD).  It is compatible with Python 2 and Python 3.\n\nA `VAD <https://en.wikipedia.org/wiki/Voice_activity_detection>`_\nclassifies a piece of audio data as being voiced or unvoiced. It can\nbe useful for telephony and speech recognition.\n\nThe VAD that Google developed for the `WebRTC <https://webrtc.org/>`_\nproject is reportedly one of the best available, being fast, modern\nand free.\n\nHow to use it\n-------------\n\n0. Install the webrtcvad module::\n\n    pip install webrtcvad\n\n1. Create a ``Vad`` object::\n\n    import webrtcvad\n    vad = webrtcvad.Vad()\n\n2. Optionally, set its aggressiveness mode, which is an integer\n   between 0 and 3. 0 is the least aggressive about filtering out\n   non-speech, 3 is the most aggressive. (You can also set the mode\n   when you create the VAD, e.g. ``vad = webrtcvad.Vad(3)``)::\n\n    vad.set_mode(1)\n\n3. Give it a short segment (\"frame\") of audio. The WebRTC VAD only\n   accepts 16-bit mono PCM audio, sampled at 8000, 16000, or 32000 Hz.\n   A frame must be either 10, 20, or 30 ms in duration::\n\n    # Run the VAD on 10 ms of silence. The result should be False.\n    sample_rate = 16000\n    frame_duration = 10  # ms\n    frame = b'\\x00\\x00' * (sample_rate * frame_duration / 1000)\n    print 'Contains speech: %s' % (vad.is_speech(frame, sample_rate)\n\n\nSee `example.py\n<https://github.com/wiseman/py-webrtcvad/blob/master/example.py>`_ for\na more detailed example that will process a .wav file, find the voiced\nsegments, and write each one as a separate .wav.\n\n\nHow to run unit tests\n---------------------\n\nTo run unit tests::\n\n    pip install -e \".[dev]\"\n    python setup.py test",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Python interface to the Google WebRTC Voice Activity Detector (VAD)",
    "version": "2.0.10",
    "split_keywords": [
        "speechrecognition",
        "asr",
        "voiceactivitydetection",
        "vad",
        "webrtc"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "md5": "213d2848aeebbbd22485d4ad630b5fdb",
                "sha256": "f1bed2fb25b63fb7b1a55d64090c993c9c9167b28485ae0bcdd81cf6ede96aea"
            },
            "downloads": -1,
            "filename": "webrtcvad-2.0.10.tar.gz",
            "has_sig": false,
            "md5_digest": "213d2848aeebbbd22485d4ad630b5fdb",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 66156,
            "upload_time": "2017-01-07T23:05:18",
            "upload_time_iso_8601": "2017-01-07T23:05:18.732212Z",
            "url": "https://files.pythonhosted.org/packages/89/34/e2de2d97f3288512b9ea56f92e7452f8207eb5a0096500badf9dfd48f5e6/webrtcvad-2.0.10.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2017-01-07 23:05:18",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "github_user": "wiseman",
    "github_project": "py-webrtcvad",
    "travis_ci": true,
    "coveralls": false,
    "github_actions": false,
    "lcname": "webrtcvad"
}
        
Elapsed time: 0.16535s