weightedstats


Nameweightedstats JSON
Version 0.4.1 PyPI version JSON
download
home_pagehttps://github.com/tinybike/weightedstats
SummaryMean, weighted mean, median, weighted median
upload_time2020-02-04 22:46:32
maintainerJack Peterson
docs_urlNone
authorJack Peterson
requires_python
licenseMIT
keywords weights mean median numpy statistics
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI
coveralls test coverage No coveralls.
            WeightedStats
=============

.. image:: https://travis-ci.org/tinybike/weightedstats.svg?branch=master
    :target: https://travis-ci.org/tinybike/weightedstats

.. image:: https://coveralls.io/repos/github/tinybike/weightedstats/badge.svg?branch=master :target: https://coveralls.io/github/tinybike/weightedstats?branch=master

.. image:: https://badge.fury.io/py/weightedstats.svg
    :target: http://badge.fury.io/py/weightedstats

Python functions to calculate the mean, weighted mean, median, and weighted median.

Installation
^^^^^^^^^^^^

The easiest way to install WeightedStats is to use pip::

    $ pip install weightedstats

Usage
^^^^^

WeightedStats includes four functions (mean, weighted_mean, median, weighted_median) which accept lists as arguments, and two functions (numpy_weighted_mean, numpy weighted_median) which accept either lists or numpy arrays.

Example:

.. code-block:: python

    import weightedstats as ws

    my_data = [1, 2, 3, 4, 5]
    my_weights = [10, 1, 1, 1, 9]

    # Ordinary (unweighted) mean and median
    ws.mean(my_data)    # equivalent to ws.weighted_mean(my_data)
    ws.median(my_data)  # equivalent to ws.weighted_median(my_data)

    # Weighted mean and median
    ws.weighted_mean(my_data, weights=my_weights)
    ws.weighted_median(my_data, weights=my_weights)

    # Special weighted mean and median functions for use with numpy arrays
    ws.numpy_weighted_mean(my_data, weights=my_weights)
    ws.numpy_weighted_median(my_data, weights=my_weights)

Tests
^^^^^

Unit tests are in the test/ directory.



            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/tinybike/weightedstats",
    "name": "weightedstats",
    "maintainer": "Jack Peterson",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "<jack@tinybike.net>",
    "keywords": "weights,mean,median,numpy,statistics",
    "author": "Jack Peterson",
    "author_email": "<jack@tinybike.net>",
    "download_url": "https://files.pythonhosted.org/packages/da/a5/f5c0e601a610e4618316be3155febbbec98994788fcc0e9d8080369266ec/weightedstats-0.4.1.tar.gz",
    "platform": "",
    "description": "WeightedStats\n=============\n\n.. image:: https://travis-ci.org/tinybike/weightedstats.svg?branch=master\n    :target: https://travis-ci.org/tinybike/weightedstats\n\n.. image:: https://coveralls.io/repos/github/tinybike/weightedstats/badge.svg?branch=master :target: https://coveralls.io/github/tinybike/weightedstats?branch=master\n\n.. image:: https://badge.fury.io/py/weightedstats.svg\n    :target: http://badge.fury.io/py/weightedstats\n\nPython functions to calculate the mean, weighted mean, median, and weighted median.\n\nInstallation\n^^^^^^^^^^^^\n\nThe easiest way to install WeightedStats is to use pip::\n\n    $ pip install weightedstats\n\nUsage\n^^^^^\n\nWeightedStats includes four functions (mean, weighted_mean, median, weighted_median) which accept lists as arguments, and two functions (numpy_weighted_mean, numpy weighted_median) which accept either lists or numpy arrays.\n\nExample:\n\n.. code-block:: python\n\n    import weightedstats as ws\n\n    my_data = [1, 2, 3, 4, 5]\n    my_weights = [10, 1, 1, 1, 9]\n\n    # Ordinary (unweighted) mean and median\n    ws.mean(my_data)    # equivalent to ws.weighted_mean(my_data)\n    ws.median(my_data)  # equivalent to ws.weighted_median(my_data)\n\n    # Weighted mean and median\n    ws.weighted_mean(my_data, weights=my_weights)\n    ws.weighted_median(my_data, weights=my_weights)\n\n    # Special weighted mean and median functions for use with numpy arrays\n    ws.numpy_weighted_mean(my_data, weights=my_weights)\n    ws.numpy_weighted_median(my_data, weights=my_weights)\n\nTests\n^^^^^\n\nUnit tests are in the test/ directory.\n\n\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Mean, weighted mean, median, weighted median",
    "version": "0.4.1",
    "project_urls": {
        "Download": "https://github.com/tinybike/weightedstats/tarball/0.4.1",
        "Homepage": "https://github.com/tinybike/weightedstats"
    },
    "split_keywords": [
        "weights",
        "mean",
        "median",
        "numpy",
        "statistics"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "4ac7bd3aea4766db65f7da86753450c80a786bddbb2a11db2f9667376ec14910",
                "md5": "83020234e29603d365fa7f584c684cbf",
                "sha256": "5633991d01864dca581816da3070eed95fb3671020937a8dbad7afab4a38ef0c"
            },
            "downloads": -1,
            "filename": "weightedstats-0.4.1-py2-none-any.whl",
            "has_sig": false,
            "md5_digest": "83020234e29603d365fa7f584c684cbf",
            "packagetype": "bdist_wheel",
            "python_version": "py2",
            "requires_python": null,
            "size": 3812,
            "upload_time": "2020-02-04T22:46:29",
            "upload_time_iso_8601": "2020-02-04T22:46:29.061816Z",
            "url": "https://files.pythonhosted.org/packages/4a/c7/bd3aea4766db65f7da86753450c80a786bddbb2a11db2f9667376ec14910/weightedstats-0.4.1-py2-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "8d7324ecd3d2230edb304d8c2febe61711ae75c11fc792acc8fd3b056b4eb6cc",
                "md5": "9fd33eb4e0fd37ae53013243deee3c8b",
                "sha256": "6ead0c27df10b0598d7e3a1c2bc201b925f5ac47099df0dafccce91932a5d155"
            },
            "downloads": -1,
            "filename": "weightedstats-0.4.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "9fd33eb4e0fd37ae53013243deee3c8b",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 3812,
            "upload_time": "2020-02-04T22:46:30",
            "upload_time_iso_8601": "2020-02-04T22:46:30.401252Z",
            "url": "https://files.pythonhosted.org/packages/8d/73/24ecd3d2230edb304d8c2febe61711ae75c11fc792acc8fd3b056b4eb6cc/weightedstats-0.4.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "daa5f5c0e601a610e4618316be3155febbbec98994788fcc0e9d8080369266ec",
                "md5": "f5cac13564b15e49a4eee9ca6d195ca4",
                "sha256": "beb488a3f46aa06dbc8491578ec7e408847ca682edc7ec90846f6df9e36cab50"
            },
            "downloads": -1,
            "filename": "weightedstats-0.4.1.tar.gz",
            "has_sig": false,
            "md5_digest": "f5cac13564b15e49a4eee9ca6d195ca4",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 4327,
            "upload_time": "2020-02-04T22:46:32",
            "upload_time_iso_8601": "2020-02-04T22:46:32.246323Z",
            "url": "https://files.pythonhosted.org/packages/da/a5/f5c0e601a610e4618316be3155febbbec98994788fcc0e9d8080369266ec/weightedstats-0.4.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2020-02-04 22:46:32",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "tinybike",
    "github_project": "weightedstats",
    "travis_ci": true,
    "coveralls": false,
    "github_actions": false,
    "test_requirements": [],
    "lcname": "weightedstats"
}
        
Elapsed time: 0.11578s