# AiDA Whisper Evaluation Framework (Serbian)
[An evaluation framework for Serbian Whisper models.](https://aida.guru)
# Whisper Evaluator 🎤
A simple, modular framework to evaluate fine-tuned Whisper models in Python notebooks.
This library allows you to easily run evaluations on any dataset from the Hugging Face Hub using a simple configuration dictionary. It calculates a comprehensive set of metrics, including WER, CER, BLEU, and ROUGE, and automatically logs all results to a file.
## Installation
You can install the library directly from GitHub for latest updates and features. Make sure you have `git` installed on your system.
```bash
pip install git+https://github.com/your-username/whisper-evaluator.git
```
## Quickstart
Using the library in a Google Colab or Jupyter Notebook is straightforward.
```python
from whisper_evaluator import Evaluator
import json
# 1. Define your evaluation configuration
config = {
"model_args": {
"name_or_path": "openai/whisper-large-v2", # Your fine-tuned model ID
"device": "cuda"
},
"task_args": {
"dataset_name": "mozilla-foundation/common_voice_11_0",
"dataset_subset": "sr", # Serbian language
"dataset_split": "test[:20]", # Use the first 20 samples for a quick demo
"audio_column": "audio",
"text_column": "sentence"
}
}
# 2. Initialize the evaluator
evaluator = Evaluator(config=config)
# 3. Run the evaluation (logs to 'evaluation_log.txt' by default)
detailed_results, metrics = evaluator.run()
# 4. Analyze the results
print("\n--- Final Metrics ---")
# Pretty print the metrics dictionary
print(json.dumps(metrics, indent=2))
print("\n--- Sample of evaluation details ---")
# Print the first 3 results from the list
for i, result in enumerate(detailed_results[:3]):
print(f"\n--- Example {i+1} ---")
print(f"Reference: {result['reference']}")
print(f"Prediction: {result['prediction']}")
```
# Project Setup
Follow these steps to set up the **AiDA-Whisper-Eval** project.
---
### Using Conda
### 1. Create a new Conda environment
```bash
conda create --name aida python=3.12 -y
conda activate aida
```
#### 2. Install Poetry
```bash
pip install poetry
```
#### 3. Install project dependencies
Navigate to the project's root directory and run:
```bash
poetry install
```
---
### Using Plain Python
#### 1. Create and activate a virtual environment
```bash
python -m venv venv
# On Linux/macOS
source venv/bin/activate
# On Windows
.\venv\Scripts\activate
```
#### 2. Upgrade pip and install Poetry
```bash
pip install --upgrade pip
pip install poetry
```
#### 3. Install project dependencies
From the project's root directory, run:
```bash
poetry install
```
```bash
pip install pre-commit
```
### 4. Set up pre-commit hooks
```bash
poetry run pre-commit install
```
---
### Verifying Installation
Check installation by running tests:
```bash
# On Linux/macOS
make test
# On Windows
poetry run pytest
```
Your setup is complete!
Raw data
{
"_id": null,
"home_page": "https://aida.guru",
"name": "whisper-eval-serbian",
"maintainer": "Dejan \u010cugalj",
"docs_url": null,
"requires_python": "<4.0,>=3.10",
"maintainer_email": "dejan@textintellect.com",
"keywords": "TTS, ASR, Serbian, Audio, AI",
"author": "Dejan \u010cugalj",
"author_email": "dejan@textintellect.com",
"download_url": "https://files.pythonhosted.org/packages/b5/6c/decdea2d3010a168ac0705cabb0c8bcaf10cbc87d10c3711d73305374b85/whisper_eval_serbian-0.0.32.tar.gz",
"platform": null,
"description": "# AiDA Whisper Evaluation Framework (Serbian)\n\n\n[An evaluation framework for Serbian Whisper models.](https://aida.guru)\n\n\n# Whisper Evaluator \ud83c\udfa4\n\nA simple, modular framework to evaluate fine-tuned Whisper models in Python notebooks.\n\nThis library allows you to easily run evaluations on any dataset from the Hugging Face Hub using a simple configuration dictionary. It calculates a comprehensive set of metrics, including WER, CER, BLEU, and ROUGE, and automatically logs all results to a file.\n\n## Installation\n\nYou can install the library directly from GitHub for latest updates and features. Make sure you have `git` installed on your system.\n\n```bash\npip install git+https://github.com/your-username/whisper-evaluator.git\n```\n\n## Quickstart\n\nUsing the library in a Google Colab or Jupyter Notebook is straightforward.\n\n```python\nfrom whisper_evaluator import Evaluator\nimport json\n\n# 1. Define your evaluation configuration\nconfig = {\n \"model_args\": {\n \"name_or_path\": \"openai/whisper-large-v2\", # Your fine-tuned model ID\n \"device\": \"cuda\"\n },\n \"task_args\": {\n \"dataset_name\": \"mozilla-foundation/common_voice_11_0\",\n \"dataset_subset\": \"sr\", # Serbian language\n \"dataset_split\": \"test[:20]\", # Use the first 20 samples for a quick demo\n \"audio_column\": \"audio\",\n \"text_column\": \"sentence\"\n }\n}\n\n# 2. Initialize the evaluator\nevaluator = Evaluator(config=config)\n\n# 3. Run the evaluation (logs to 'evaluation_log.txt' by default)\ndetailed_results, metrics = evaluator.run()\n\n# 4. Analyze the results\nprint(\"\\n--- Final Metrics ---\")\n# Pretty print the metrics dictionary\nprint(json.dumps(metrics, indent=2))\n\nprint(\"\\n--- Sample of evaluation details ---\")\n# Print the first 3 results from the list\nfor i, result in enumerate(detailed_results[:3]):\n print(f\"\\n--- Example {i+1} ---\")\n print(f\"Reference: {result['reference']}\")\n print(f\"Prediction: {result['prediction']}\")\n```\n\n\n\n\n\n\n\n# Project Setup\n\nFollow these steps to set up the **AiDA-Whisper-Eval** project.\n\n---\n\n### Using Conda\n\n### 1. Create a new Conda environment\n\n```bash\nconda create --name aida python=3.12 -y\nconda activate aida\n```\n\n#### 2. Install Poetry\n\n```bash\npip install poetry\n```\n\n#### 3. Install project dependencies\n\nNavigate to the project's root directory and run:\n\n```bash\npoetry install\n```\n\n---\n\n### Using Plain Python\n\n#### 1. Create and activate a virtual environment\n\n```bash\npython -m venv venv\n\n# On Linux/macOS\nsource venv/bin/activate\n\n# On Windows\n.\\venv\\Scripts\\activate\n```\n\n#### 2. Upgrade pip and install Poetry\n\n```bash\npip install --upgrade pip\npip install poetry\n```\n\n#### 3. Install project dependencies\n\nFrom the project's root directory, run:\n\n```bash\npoetry install\n```\n\n```bash\npip install pre-commit\n```\n\n### 4. Set up pre-commit hooks\n\n```bash\npoetry run pre-commit install\n```\n\n---\n\n### Verifying Installation\n\nCheck installation by running tests:\n\n```bash\n# On Linux/macOS\nmake test\n\n# On Windows\npoetry run pytest\n```\n\nYour setup is complete!\n",
"bugtrack_url": null,
"license": "Apache-2.0",
"summary": "An evaluation framework for Serbian Whisper models.",
"version": "0.0.32",
"project_urls": {
"Documentation": "https://aida.guru/docs",
"Homepage": "https://aida.guru",
"Repository": "https://github.com/DeanChugall/AiDA.git"
},
"split_keywords": [
"tts",
" asr",
" serbian",
" audio",
" ai"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "f677550b286c0d54fa99ef3b54395b82fa2eb4eff0cf3c0842a8d20e334752eb",
"md5": "56823a4979a39a37f6f4fc0910afddc1",
"sha256": "472a20c8596cf62964690839373144103f6dbe663ba558239d302824690e2f06"
},
"downloads": -1,
"filename": "whisper_eval_serbian-0.0.32-py3-none-any.whl",
"has_sig": false,
"md5_digest": "56823a4979a39a37f6f4fc0910afddc1",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": "<4.0,>=3.10",
"size": 13869,
"upload_time": "2025-08-16T16:55:20",
"upload_time_iso_8601": "2025-08-16T16:55:20.852495Z",
"url": "https://files.pythonhosted.org/packages/f6/77/550b286c0d54fa99ef3b54395b82fa2eb4eff0cf3c0842a8d20e334752eb/whisper_eval_serbian-0.0.32-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "b56cdecdea2d3010a168ac0705cabb0c8bcaf10cbc87d10c3711d73305374b85",
"md5": "cd68b377ff1188b331c3e98d1dbcedbe",
"sha256": "0f0607f280c6d13e3c14cecf45022d4f029cf7d0eacc657f687d071c1aa851b1"
},
"downloads": -1,
"filename": "whisper_eval_serbian-0.0.32.tar.gz",
"has_sig": false,
"md5_digest": "cd68b377ff1188b331c3e98d1dbcedbe",
"packagetype": "sdist",
"python_version": "source",
"requires_python": "<4.0,>=3.10",
"size": 13385,
"upload_time": "2025-08-16T16:55:22",
"upload_time_iso_8601": "2025-08-16T16:55:22.471869Z",
"url": "https://files.pythonhosted.org/packages/b5/6c/decdea2d3010a168ac0705cabb0c8bcaf10cbc87d10c3711d73305374b85/whisper_eval_serbian-0.0.32.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-08-16 16:55:22",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "DeanChugall",
"github_project": "AiDA",
"github_not_found": true,
"lcname": "whisper-eval-serbian"
}