whisper-to-me


Namewhisper-to-me JSON
Version 0.5.0 PyPI version JSON
download
home_pageNone
SummaryReal-time voice transcription tool that converts speech to text and types it directly into any application
upload_time2025-07-22 03:44:43
maintainerNone
docs_urlNone
authormarnunez
requires_python>=3.12
licenseMIT
keywords accessibility speech-to-text transcription voice-to-text whisper
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Whisper-to-Me

A real-time voice transcription tool that converts speech to text using
FasterWhisper and types the result directly into any application via simulated
keystrokes.

## Features

- **Push-to-talk and tap-to-start** recording modes with configurable hotkeys
- **Local speech recognition** (no internet required)
- **Global hotkey support** across all applications
- **Multiple language support** with auto-detection
- **Multiple audio device support**
- **System tray integration** with visual recording indicator
- **Single instance protection** - prevents multiple instances
- **Recording discard option** in tap mode (press Esc to cancel)
- **Debug mode** for troubleshooting
- **High-accuracy transcription** using FasterWhisper
- **Real-time performance** optimized for responsiveness

## Requirements

- Python 3.12+
- CUDA-capable GPU (optional, CPU mode available)
- Audio input device (microphone)
- Linux operating system

## Installation

### From PyPI (Recommended)

```bash
# Install using pip
pip install whisper-to-me

# Or using uv (faster)
uv tool install whisper-to-me
```

### From Source

1. Install system dependencies:

```bash
# Ubuntu/Debian
sudo apt install portaudio19-dev libsndfile1-dev

# Fedora
sudo dnf install portaudio-devel libsndfile-devel

# Arch Linux
sudo pacman -S portaudio libsndfile
```

1. Clone and install:

```bash
git clone https://github.com/marnunez/whisper-to-me.git
cd whisper-to-me
uv tool install .
```

## Usage

### Basic Usage

Simply run the command after installation:

```bash
whisper-to-me
```

The application will:

1. Load the Whisper model (first run may take a moment)
2. Show a system tray icon (microphone)
3. Listen for the trigger key (Scroll Lock by default)

**Push-to-talk mode (default):**
4. Press and hold the trigger key to record
5. Release to transcribe and type the text

**Tap mode (--tap-mode):**
4. Tap the trigger key to start recording
5. Tap again to stop and transcribe, or press Esc to discard

### Command Line Options

```bash
whisper-to-me [options]

Options:
  --model MODEL         Whisper model size (tiny, base, small, medium, large-v3)
  --device DEVICE       Processing device (cpu, cuda)
  --key KEY            Trigger key (single key or combination, e.g., <scroll_lock>, <ctrl>+<shift>+r)
  --language LANG      Target language (auto, en, es, fr, etc.)
  --list-devices       List available audio input devices
  --audio-device ID    Audio device ID to use
  --debug             Save recorded audio files for debugging
  --no-tray           Disable system tray icon
  --tap-mode          Use tap-to-start/tap-to-stop instead of push-to-talk
  --discard-key KEY   Key to discard recording in tap mode (default: esc)
  --help              Show help message
```

### Examples

```bash
# Use default settings (large-v3 model, CUDA, scroll lock key, auto language)
whisper-to-me

# Use smaller model on CPU with caps lock trigger
whisper-to-me --model base --device cpu --key "<caps_lock>"

# Use key combination as trigger (Ctrl+Shift+R)
whisper-to-me --key "<ctrl>+<shift>+r"

# Use Ctrl+- (minus) as trigger
whisper-to-me --key "<ctrl>+-"

# Spanish transcription with debug mode
whisper-to-me --language es --debug --audio-device 2

# Run without system tray (terminal only)
whisper-to-me --no-tray

# List available audio devices
whisper-to-me --list-devices

# Use tap-to-start/tap-to-stop mode
whisper-to-me --tap-mode

# Tap mode with delete key to discard recordings
whisper-to-me --tap-mode --discard-key "<delete>"
```

## Configuration

Whisper-to-Me supports persistent configuration through a TOML config file and multiple profiles for different use cases.

### Configuration File

**Location**: `~/.config/whisper-to-me/config.toml`

View the config file location:
```bash
whisper-to-me --config-path
```

### Configuration Sections

#### General Settings (`[general]`)

- **`model`**: Whisper model size
  - Options: `"tiny"`, `"base"`, `"small"`, `"medium"`, `"large-v3"` (default)
  - Affects: Transcription accuracy vs speed trade-off

- **`device`**: Processing device
  - Options: `"cpu"`, `"cuda"` (default)
  - Affects: Transcription speed (GPU acceleration)

- **`language`**: Target language
  - Options: `"auto"` (default), `"en"`, `"es"`, `"fr"`, etc.
  - Affects: Transcription accuracy for specific languages

- **`debug`**: Debug mode
  - Options: `true`, `false` (default)
  - Affects: Saves audio files for troubleshooting

#### Recording Settings (`[recording]`)

- **`mode`**: Recording mode
  - Options: `"push-to-talk"` (default), `"tap-mode"`
  - Affects: How recording is triggered

- **`trigger_key`**: Key combination to trigger recording
  - Default: `"<scroll_lock>"`
  - Examples: `"<caps_lock>"`, `"<ctrl>+<shift>+r"`, `"<alt>+<space>"`

- **`discard_key`**: Key to discard recording in tap mode
  - Default: `"<esc>"`
  - Options: Single keys like `"<delete>"`, `"<backspace>"`

- **`audio_device`**: Audio input device ID
  - Default: `""` (system default)
  - Use `--list-devices` to see available devices

#### UI Settings (`[ui]`)

- **`use_tray`**: System tray integration
  - Options: `true` (default), `false`
  - Affects: Shows microphone icon in system tray

#### Advanced Settings (`[advanced]`)

- **`sample_rate`**: Audio sample rate
  - Default: `16000` Hz
  - Affects: Audio quality and processing speed

- **`chunk_size`**: Audio processing chunk size
  - Default: `512`
  - Affects: Real-time processing performance

- **`vad_filter`**: Voice Activity Detection filter
  - Default: `true`
  - Affects: Noise filtering during recording

### Configuration Profiles

Create and manage multiple configuration profiles for different use cases:

#### Profile Management

```bash
# List available profiles
whisper-to-me --list-profiles

# Use specific profile
whisper-to-me --profile work

# Create new profile from current settings
whisper-to-me --model tiny --device cpu --create-profile quick
```

#### Example Profile Configuration

```toml
[general]
model = "large-v3"
device = "cuda"
language = "auto"
debug = false
last_profile = "default"

[recording]
mode = "push-to-talk"
trigger_key = "<scroll_lock>"
discard_key = "<esc>"
audio_device = ""

[ui]
use_tray = true

[advanced]
sample_rate = 16000
chunk_size = 512
vad_filter = true

# Work profile - English only, medium model, caps lock trigger
[profiles.work]
[profiles.work.general]
language = "en"
model = "medium"
[profiles.work.recording]
trigger_key = "<caps_lock>"

# Spanish profile - Spanish language, large model
[profiles.spanish]
[profiles.spanish.general]
language = "es"
model = "large-v3"

# Quick profile - Fast transcription, CPU only
[profiles.quick]
[profiles.quick.general]
model = "tiny"
device = "cpu"
[profiles.quick.recording]
mode = "tap-mode"
```

### Configuration Priority

Settings are applied in this order (highest to lowest priority):

1. Command line arguments
2. Profile settings
3. Base configuration file
4. Default values

### System Tray

The system tray icon shows:

- **Gray microphone**: Ready to record
- **Red microphone**: Currently recording
- **Right-click menu**: View status and quit

## How It Works

1. **Single Instance Protection**: Ensures only one instance runs at a time
2. **Global Hotkey Detection**: Monitors for configured trigger key across all applications
3. **Audio Recording**: Captures microphone input while key is held
4. **Speech Processing**: Uses FasterWhisper for local speech-to-text
   conversion
5. **Keystroke Simulation**: Types the transcribed text directly into the
   active application
6. **System Integration**: Shows status in system tray with visual feedback

## Performance Notes

- **First Run**: May take longer as the Whisper model downloads (~1-3GB)
- **GPU Acceleration**: CUDA significantly improves transcription speed
- **Model Sizes**:
  - `tiny`: Fastest, least accurate (~39MB)
  - `base`: Good balance (~74MB)
  - `small`: Better accuracy (~244MB)
  - `medium`: High accuracy (~769MB)
  - `large-v3`: Best accuracy (~1550MB, default)
- **Audio Quality**: Better microphone input improves transcription accuracy

### Key Combinations

You can use key combinations as trigger keys:

```bash
# Single keys
whisper-to-me --key "<scroll_lock>"
whisper-to-me --key "<caps_lock>"
whisper-to-me --key "a"           # Single character

# Key combinations  
whisper-to-me --key "<ctrl>+<shift>+r"
whisper-to-me --key "<alt>+<space>"
whisper-to-me --key "<ctrl>+-"    # Ctrl + minus
whisper-to-me --key "<shift>+1"   # Shift + 1
```

Uses standard pynput format:
- **Named keys**: Wrap in angle brackets `<ctrl>`, `<alt>`, `<shift>`, `<esc>`, `<tab>`, etc.
- **Single characters**: Use directly `a`, `1`, `-`, `+`, etc.
- **Combinations**: Join with `+` symbol

## Troubleshooting

### Common Issues

1. **"Already running" error**: Only one instance allowed - check system
   tray or use `pkill whisper-to-me`
2. **Permission errors**: May need permissions for global key capture and
   microphone access
3. **Audio issues**: Check microphone permissions with `--list-devices`
4. **CUDA errors**: Install CUDA drivers or use `--device cpu`
5. **Trigger key not working**: Try different keys like `--key "<caps_lock>"`

### Debug Mode

Use `--debug` to save recorded audio files for troubleshooting:

```bash
whisper-to-me --debug
```

### System Requirements Check

```bash
# Check audio devices
whisper-to-me --list-devices

# Test with smaller model
whisper-to-me --model tiny --device cpu
```

## Uninstallation

```bash
# If installed with pip
pip uninstall whisper-to-me

# If installed with uv tool
uv tool uninstall whisper-to-me
```

## Development

### Setup Development Environment

```bash
git clone https://github.com/marnunez/whisper-to-me.git
cd whisper-to-me
uv sync --all-extras --dev
```

### Run Tests

```bash
uv run pytest
```

### Code Quality

```bash
uv run ruff check
uv run ruff format
```

## Contributing

1. Fork the repository
2. Create a feature branch (`git checkout -b feature/amazing-feature`)
3. Make your changes
4. Add tests if applicable
5. Ensure code quality (`uv run ruff check && uv run pytest`)
6. Commit your changes (`git commit -m 'Add amazing feature'`)
7. Push to the branch (`git push origin feature/amazing-feature`)
8. Open a Pull Request

## License

This project is licensed under the MIT License - see the
[LICENSE](LICENSE) file for details.

## Acknowledgments

- [FasterWhisper](https://github.com/guillaumekln/faster-whisper) for fast
  speech recognition
- [OpenAI Whisper](https://github.com/openai/whisper) for the underlying model
- [PyNput](https://github.com/moses-palmer/pynput) for cross-platform input
  control

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "whisper-to-me",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.12",
    "maintainer_email": null,
    "keywords": "accessibility, speech-to-text, transcription, voice-to-text, whisper",
    "author": "marnunez",
    "author_email": null,
    "download_url": "https://files.pythonhosted.org/packages/7a/39/7f00d9bea8e2e1ed3ff9dd1f80939d05c4a03c63cee6274b56cfd0c5dad4/whisper_to_me-0.5.0.tar.gz",
    "platform": null,
    "description": "# Whisper-to-Me\n\nA real-time voice transcription tool that converts speech to text using\nFasterWhisper and types the result directly into any application via simulated\nkeystrokes.\n\n## Features\n\n- **Push-to-talk and tap-to-start** recording modes with configurable hotkeys\n- **Local speech recognition** (no internet required)\n- **Global hotkey support** across all applications\n- **Multiple language support** with auto-detection\n- **Multiple audio device support**\n- **System tray integration** with visual recording indicator\n- **Single instance protection** - prevents multiple instances\n- **Recording discard option** in tap mode (press Esc to cancel)\n- **Debug mode** for troubleshooting\n- **High-accuracy transcription** using FasterWhisper\n- **Real-time performance** optimized for responsiveness\n\n## Requirements\n\n- Python 3.12+\n- CUDA-capable GPU (optional, CPU mode available)\n- Audio input device (microphone)\n- Linux operating system\n\n## Installation\n\n### From PyPI (Recommended)\n\n```bash\n# Install using pip\npip install whisper-to-me\n\n# Or using uv (faster)\nuv tool install whisper-to-me\n```\n\n### From Source\n\n1. Install system dependencies:\n\n```bash\n# Ubuntu/Debian\nsudo apt install portaudio19-dev libsndfile1-dev\n\n# Fedora\nsudo dnf install portaudio-devel libsndfile-devel\n\n# Arch Linux\nsudo pacman -S portaudio libsndfile\n```\n\n1. Clone and install:\n\n```bash\ngit clone https://github.com/marnunez/whisper-to-me.git\ncd whisper-to-me\nuv tool install .\n```\n\n## Usage\n\n### Basic Usage\n\nSimply run the command after installation:\n\n```bash\nwhisper-to-me\n```\n\nThe application will:\n\n1. Load the Whisper model (first run may take a moment)\n2. Show a system tray icon (microphone)\n3. Listen for the trigger key (Scroll Lock by default)\n\n**Push-to-talk mode (default):**\n4. Press and hold the trigger key to record\n5. Release to transcribe and type the text\n\n**Tap mode (--tap-mode):**\n4. Tap the trigger key to start recording\n5. Tap again to stop and transcribe, or press Esc to discard\n\n### Command Line Options\n\n```bash\nwhisper-to-me [options]\n\nOptions:\n  --model MODEL         Whisper model size (tiny, base, small, medium, large-v3)\n  --device DEVICE       Processing device (cpu, cuda)\n  --key KEY            Trigger key (single key or combination, e.g., <scroll_lock>, <ctrl>+<shift>+r)\n  --language LANG      Target language (auto, en, es, fr, etc.)\n  --list-devices       List available audio input devices\n  --audio-device ID    Audio device ID to use\n  --debug             Save recorded audio files for debugging\n  --no-tray           Disable system tray icon\n  --tap-mode          Use tap-to-start/tap-to-stop instead of push-to-talk\n  --discard-key KEY   Key to discard recording in tap mode (default: esc)\n  --help              Show help message\n```\n\n### Examples\n\n```bash\n# Use default settings (large-v3 model, CUDA, scroll lock key, auto language)\nwhisper-to-me\n\n# Use smaller model on CPU with caps lock trigger\nwhisper-to-me --model base --device cpu --key \"<caps_lock>\"\n\n# Use key combination as trigger (Ctrl+Shift+R)\nwhisper-to-me --key \"<ctrl>+<shift>+r\"\n\n# Use Ctrl+- (minus) as trigger\nwhisper-to-me --key \"<ctrl>+-\"\n\n# Spanish transcription with debug mode\nwhisper-to-me --language es --debug --audio-device 2\n\n# Run without system tray (terminal only)\nwhisper-to-me --no-tray\n\n# List available audio devices\nwhisper-to-me --list-devices\n\n# Use tap-to-start/tap-to-stop mode\nwhisper-to-me --tap-mode\n\n# Tap mode with delete key to discard recordings\nwhisper-to-me --tap-mode --discard-key \"<delete>\"\n```\n\n## Configuration\n\nWhisper-to-Me supports persistent configuration through a TOML config file and multiple profiles for different use cases.\n\n### Configuration File\n\n**Location**: `~/.config/whisper-to-me/config.toml`\n\nView the config file location:\n```bash\nwhisper-to-me --config-path\n```\n\n### Configuration Sections\n\n#### General Settings (`[general]`)\n\n- **`model`**: Whisper model size\n  - Options: `\"tiny\"`, `\"base\"`, `\"small\"`, `\"medium\"`, `\"large-v3\"` (default)\n  - Affects: Transcription accuracy vs speed trade-off\n\n- **`device`**: Processing device\n  - Options: `\"cpu\"`, `\"cuda\"` (default)\n  - Affects: Transcription speed (GPU acceleration)\n\n- **`language`**: Target language\n  - Options: `\"auto\"` (default), `\"en\"`, `\"es\"`, `\"fr\"`, etc.\n  - Affects: Transcription accuracy for specific languages\n\n- **`debug`**: Debug mode\n  - Options: `true`, `false` (default)\n  - Affects: Saves audio files for troubleshooting\n\n#### Recording Settings (`[recording]`)\n\n- **`mode`**: Recording mode\n  - Options: `\"push-to-talk\"` (default), `\"tap-mode\"`\n  - Affects: How recording is triggered\n\n- **`trigger_key`**: Key combination to trigger recording\n  - Default: `\"<scroll_lock>\"`\n  - Examples: `\"<caps_lock>\"`, `\"<ctrl>+<shift>+r\"`, `\"<alt>+<space>\"`\n\n- **`discard_key`**: Key to discard recording in tap mode\n  - Default: `\"<esc>\"`\n  - Options: Single keys like `\"<delete>\"`, `\"<backspace>\"`\n\n- **`audio_device`**: Audio input device ID\n  - Default: `\"\"` (system default)\n  - Use `--list-devices` to see available devices\n\n#### UI Settings (`[ui]`)\n\n- **`use_tray`**: System tray integration\n  - Options: `true` (default), `false`\n  - Affects: Shows microphone icon in system tray\n\n#### Advanced Settings (`[advanced]`)\n\n- **`sample_rate`**: Audio sample rate\n  - Default: `16000` Hz\n  - Affects: Audio quality and processing speed\n\n- **`chunk_size`**: Audio processing chunk size\n  - Default: `512`\n  - Affects: Real-time processing performance\n\n- **`vad_filter`**: Voice Activity Detection filter\n  - Default: `true`\n  - Affects: Noise filtering during recording\n\n### Configuration Profiles\n\nCreate and manage multiple configuration profiles for different use cases:\n\n#### Profile Management\n\n```bash\n# List available profiles\nwhisper-to-me --list-profiles\n\n# Use specific profile\nwhisper-to-me --profile work\n\n# Create new profile from current settings\nwhisper-to-me --model tiny --device cpu --create-profile quick\n```\n\n#### Example Profile Configuration\n\n```toml\n[general]\nmodel = \"large-v3\"\ndevice = \"cuda\"\nlanguage = \"auto\"\ndebug = false\nlast_profile = \"default\"\n\n[recording]\nmode = \"push-to-talk\"\ntrigger_key = \"<scroll_lock>\"\ndiscard_key = \"<esc>\"\naudio_device = \"\"\n\n[ui]\nuse_tray = true\n\n[advanced]\nsample_rate = 16000\nchunk_size = 512\nvad_filter = true\n\n# Work profile - English only, medium model, caps lock trigger\n[profiles.work]\n[profiles.work.general]\nlanguage = \"en\"\nmodel = \"medium\"\n[profiles.work.recording]\ntrigger_key = \"<caps_lock>\"\n\n# Spanish profile - Spanish language, large model\n[profiles.spanish]\n[profiles.spanish.general]\nlanguage = \"es\"\nmodel = \"large-v3\"\n\n# Quick profile - Fast transcription, CPU only\n[profiles.quick]\n[profiles.quick.general]\nmodel = \"tiny\"\ndevice = \"cpu\"\n[profiles.quick.recording]\nmode = \"tap-mode\"\n```\n\n### Configuration Priority\n\nSettings are applied in this order (highest to lowest priority):\n\n1. Command line arguments\n2. Profile settings\n3. Base configuration file\n4. Default values\n\n### System Tray\n\nThe system tray icon shows:\n\n- **Gray microphone**: Ready to record\n- **Red microphone**: Currently recording\n- **Right-click menu**: View status and quit\n\n## How It Works\n\n1. **Single Instance Protection**: Ensures only one instance runs at a time\n2. **Global Hotkey Detection**: Monitors for configured trigger key across all applications\n3. **Audio Recording**: Captures microphone input while key is held\n4. **Speech Processing**: Uses FasterWhisper for local speech-to-text\n   conversion\n5. **Keystroke Simulation**: Types the transcribed text directly into the\n   active application\n6. **System Integration**: Shows status in system tray with visual feedback\n\n## Performance Notes\n\n- **First Run**: May take longer as the Whisper model downloads (~1-3GB)\n- **GPU Acceleration**: CUDA significantly improves transcription speed\n- **Model Sizes**:\n  - `tiny`: Fastest, least accurate (~39MB)\n  - `base`: Good balance (~74MB)\n  - `small`: Better accuracy (~244MB)\n  - `medium`: High accuracy (~769MB)\n  - `large-v3`: Best accuracy (~1550MB, default)\n- **Audio Quality**: Better microphone input improves transcription accuracy\n\n### Key Combinations\n\nYou can use key combinations as trigger keys:\n\n```bash\n# Single keys\nwhisper-to-me --key \"<scroll_lock>\"\nwhisper-to-me --key \"<caps_lock>\"\nwhisper-to-me --key \"a\"           # Single character\n\n# Key combinations  \nwhisper-to-me --key \"<ctrl>+<shift>+r\"\nwhisper-to-me --key \"<alt>+<space>\"\nwhisper-to-me --key \"<ctrl>+-\"    # Ctrl + minus\nwhisper-to-me --key \"<shift>+1\"   # Shift + 1\n```\n\nUses standard pynput format:\n- **Named keys**: Wrap in angle brackets `<ctrl>`, `<alt>`, `<shift>`, `<esc>`, `<tab>`, etc.\n- **Single characters**: Use directly `a`, `1`, `-`, `+`, etc.\n- **Combinations**: Join with `+` symbol\n\n## Troubleshooting\n\n### Common Issues\n\n1. **\"Already running\" error**: Only one instance allowed - check system\n   tray or use `pkill whisper-to-me`\n2. **Permission errors**: May need permissions for global key capture and\n   microphone access\n3. **Audio issues**: Check microphone permissions with `--list-devices`\n4. **CUDA errors**: Install CUDA drivers or use `--device cpu`\n5. **Trigger key not working**: Try different keys like `--key \"<caps_lock>\"`\n\n### Debug Mode\n\nUse `--debug` to save recorded audio files for troubleshooting:\n\n```bash\nwhisper-to-me --debug\n```\n\n### System Requirements Check\n\n```bash\n# Check audio devices\nwhisper-to-me --list-devices\n\n# Test with smaller model\nwhisper-to-me --model tiny --device cpu\n```\n\n## Uninstallation\n\n```bash\n# If installed with pip\npip uninstall whisper-to-me\n\n# If installed with uv tool\nuv tool uninstall whisper-to-me\n```\n\n## Development\n\n### Setup Development Environment\n\n```bash\ngit clone https://github.com/marnunez/whisper-to-me.git\ncd whisper-to-me\nuv sync --all-extras --dev\n```\n\n### Run Tests\n\n```bash\nuv run pytest\n```\n\n### Code Quality\n\n```bash\nuv run ruff check\nuv run ruff format\n```\n\n## Contributing\n\n1. Fork the repository\n2. Create a feature branch (`git checkout -b feature/amazing-feature`)\n3. Make your changes\n4. Add tests if applicable\n5. Ensure code quality (`uv run ruff check && uv run pytest`)\n6. Commit your changes (`git commit -m 'Add amazing feature'`)\n7. Push to the branch (`git push origin feature/amazing-feature`)\n8. Open a Pull Request\n\n## License\n\nThis project is licensed under the MIT License - see the\n[LICENSE](LICENSE) file for details.\n\n## Acknowledgments\n\n- [FasterWhisper](https://github.com/guillaumekln/faster-whisper) for fast\n  speech recognition\n- [OpenAI Whisper](https://github.com/openai/whisper) for the underlying model\n- [PyNput](https://github.com/moses-palmer/pynput) for cross-platform input\n  control\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Real-time voice transcription tool that converts speech to text and types it directly into any application",
    "version": "0.5.0",
    "project_urls": {
        "Homepage": "https://github.com/marnunez/whisper-to-me",
        "Issues": "https://github.com/marnunez/whisper-to-me/issues",
        "Repository": "https://github.com/marnunez/whisper-to-me"
    },
    "split_keywords": [
        "accessibility",
        " speech-to-text",
        " transcription",
        " voice-to-text",
        " whisper"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "2fdd2b0390f9540d38974bc09b643425763ba214d08a1b2a6e8803c9b835a06d",
                "md5": "5bf2936cb3f8fe1999a5313fc73eeade",
                "sha256": "910da7dcc2a011b5b447a3e311fc0704d74e8bbe64dd72fcdab41ad948b94cf4"
            },
            "downloads": -1,
            "filename": "whisper_to_me-0.5.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "5bf2936cb3f8fe1999a5313fc73eeade",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.12",
            "size": 50339,
            "upload_time": "2025-07-22T03:44:42",
            "upload_time_iso_8601": "2025-07-22T03:44:42.550947Z",
            "url": "https://files.pythonhosted.org/packages/2f/dd/2b0390f9540d38974bc09b643425763ba214d08a1b2a6e8803c9b835a06d/whisper_to_me-0.5.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "7a397f00d9bea8e2e1ed3ff9dd1f80939d05c4a03c63cee6274b56cfd0c5dad4",
                "md5": "057bd06328e5308b290e354e2f63e05d",
                "sha256": "4b1145b9d311778efc94d8970e80e4bb5720103c3578cda6c33581432355c1de"
            },
            "downloads": -1,
            "filename": "whisper_to_me-0.5.0.tar.gz",
            "has_sig": false,
            "md5_digest": "057bd06328e5308b290e354e2f63e05d",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.12",
            "size": 40917,
            "upload_time": "2025-07-22T03:44:43",
            "upload_time_iso_8601": "2025-07-22T03:44:43.680270Z",
            "url": "https://files.pythonhosted.org/packages/7a/39/7f00d9bea8e2e1ed3ff9dd1f80939d05c4a03c63cee6274b56cfd0c5dad4/whisper_to_me-0.5.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-07-22 03:44:43",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "marnunez",
    "github_project": "whisper-to-me",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "whisper-to-me"
}
        
Elapsed time: 0.45688s