winner


Namewinner JSON
Version 0.0.1 PyPI version JSON
download
home_pagehttps://github.com/CleanML/clean_ml.git
SummaryA python package for data-centric MLOps for data cleaning and feature engineering
upload_time2023-09-28 14:23:04
maintainer
docs_urlNone
authorCleanML
requires_python>=3.6
license
keywords data cleaning feature engineering data science machine learning mlops ner token classification text-annotation data-centric reports
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Winner
A python library of CleanML Data-centric MLOps suite for Named entity recognition



            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/CleanML/clean_ml.git",
    "name": "winner",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.6",
    "maintainer_email": "",
    "keywords": "data cleaning,feature engineering,data science,machine learning,mlops,ner,token classification,text-annotation,data-centric reports",
    "author": "CleanML",
    "author_email": "support@astutic.com",
    "download_url": "",
    "platform": null,
    "description": "# Winner\nA python library of CleanML Data-centric MLOps suite for Named entity recognition\n\n\n",
    "bugtrack_url": null,
    "license": "",
    "summary": "A python package for data-centric MLOps for data cleaning and feature engineering",
    "version": "0.0.1",
    "project_urls": {
        "Documentation": "https://winner.readthedocs.io/en/latest/",
        "Homepage": "https://github.com/CleanML/clean_ml.git",
        "Source Code": "https://github.com/CleanML/clean_ml.git"
    },
    "split_keywords": [
        "data cleaning",
        "feature engineering",
        "data science",
        "machine learning",
        "mlops",
        "ner",
        "token classification",
        "text-annotation",
        "data-centric reports"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "c4170a539c8c4df4ecc585da81110018fd9d73ea2fbab4111dbe0bba37eec4cb",
                "md5": "90cabc6706c2482847bd32a4bcbfd3fd",
                "sha256": "44e32c2276426c671558136d19737ad65337011f664b68cadc2d9ffcf5899b26"
            },
            "downloads": -1,
            "filename": "winner-0.0.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "90cabc6706c2482847bd32a4bcbfd3fd",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.6",
            "size": 12120,
            "upload_time": "2023-09-28T14:23:04",
            "upload_time_iso_8601": "2023-09-28T14:23:04.011249Z",
            "url": "https://files.pythonhosted.org/packages/c4/17/0a539c8c4df4ecc585da81110018fd9d73ea2fbab4111dbe0bba37eec4cb/winner-0.0.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-09-28 14:23:04",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "CleanML",
    "github_project": "clean_ml",
    "github_not_found": true,
    "lcname": "winner"
}
        
Elapsed time: 0.14731s