# DATA사업부 텍스트 데이터 분석기(텍분기)
텍분기는 DATA사업부 내 텍스트 분석 결과를 직관적으로 시각화할 수 있는 내부 플랫폼입니다.
# 기능
- 게시글 분석
- 키워드 분석
- 네트워크 분석
- 토픽 분석
- 감성 분석
- 종합 리포트
# 시스템 환경
## H/W
- O/S: CentOS 7.9
- RAM: 256Gb
- GPU: NVIDIA® Tesla™ T4 16GB
## S/W
- Writen for Python 3.9+
- Core Library
- [Pymogo](https://pymongo.readthedocs.io/en/stable/) : 4.5.0
- [Numpy](https://numpy.org/): 1.23.1
- [Pandas](https://pandas.pydata.org/docs/index.html): 1.4.3
- [Konlpy](https://konlpy.org/ko/latest/index.html): 0.6.0
- [Kiwipiepy](https://bab2min.github.io/kiwipiepy/v0.16.0/kr/): 0.15.2
- [Gensim](https://radimrehurek.com/gensim/): 4.3.2
- [scikit-learn](https://scikit-learn.org/stable/): 1.1.2
- [PyTorch](https://pytorch.org/): 2.0.1
# 문의 사항
메뉴얼 사용 중 문의 및 피드백 사항이 있을 경우, 아래 Contributors에게 문의해주세요.
<h2 align='center'>💫 Contributor 💫</h3>
<table align='center'>
<tbody>
<tr>
<td align="center" valign="center" width="14.28%"><a href="mailto:yjkkim@wisenut.co.kr"><img src="https://gitlab.wisenut.kr/uploads/-/system/user/avatar/462/avatar.png?width=96" width="100px;"/><br/><sub><b>김유진</b></sub></a><br/></td>
<td align="center" valign="" width="14.28%"><a href="mailto:sanminpark@wisenut.co.kr"><img src="https://secure.gravatar.com/avatar/33a0c94636917f188fb0635bb38a6477?s=80&d=identicon" width="100px;"/><br/><sub><b>박상민</b></sub></a><br/></td>
<td align="center" valign="" width="14.28%"><a href="mailto:wsc9150@wisenut.co.kr"><img src="https://secure.gravatar.com/avatar/d5ffb9e47011056155303eb085215646?s=192&d=identicon" width="100px;"/><br/><sub><b>최우석</b></sub></a><br/></td>
<td align="center" valign="" width="14.28%"><a href="mailto:kys@wisenut.co.kr"><img src="https://secure.gravatar.com/avatar/d6d45c8ad3c4a13ce3c39961f0b2e10e?s=192&d=identicon" width="100px;"/><br/><sub><b>김이소</b></sub></a><br/></td>
<td align="center" valign="" width="14.28%"><a href="mailto:fbthsla@gmail.com"><img src="https://secure.gravatar.com/avatar/07489895da4a15477c28b83ef1a7a7fe?s=192&d=identicon" width="100px;"/><br/><sub><b>류소현</b></sub></a><br/></td>
</tr>
</tbody>
</table>
Raw data
{
"_id": null,
"home_page": "https://gitlab.wisenut.kr/sangminpark/INTERNAL_ANALYZER",
"name": "wisenutDTA",
"maintainer": "",
"docs_url": null,
"requires_python": ">=3.8",
"maintainer_email": "",
"keywords": "WisenutDT,TextAnalyzer",
"author": "Yujin Kim, Sangmin Park, Wooseok Choi, Yiso Kim",
"author_email": "sangminpark@wisenut.co.kr",
"download_url": "https://gitlab.wisenut.kr/sangminpark/INTERNAL_ANALYZER/-/archive/0.0.3/INTERNAL_ANALYZER-0.0.3.tar.gz",
"platform": null,
"description": "# DATA\uc0ac\uc5c5\ubd80 \ud14d\uc2a4\ud2b8 \ub370\uc774\ud130 \ubd84\uc11d\uae30(\ud14d\ubd84\uae30)\n\ud14d\ubd84\uae30\ub294 DATA\uc0ac\uc5c5\ubd80 \ub0b4 \ud14d\uc2a4\ud2b8 \ubd84\uc11d \uacb0\uacfc\ub97c \uc9c1\uad00\uc801\uc73c\ub85c \uc2dc\uac01\ud654\ud560 \uc218 \uc788\ub294 \ub0b4\ubd80 \ud50c\ub7ab\ud3fc\uc785\ub2c8\ub2e4.\n# \uae30\ub2a5\n- \uac8c\uc2dc\uae00 \ubd84\uc11d\n- \ud0a4\uc6cc\ub4dc \ubd84\uc11d\n- \ub124\ud2b8\uc6cc\ud06c \ubd84\uc11d\n- \ud1a0\ud53d \ubd84\uc11d\n- \uac10\uc131 \ubd84\uc11d\n- \uc885\ud569 \ub9ac\ud3ec\ud2b8\n# \uc2dc\uc2a4\ud15c \ud658\uacbd\n## H/W\n- O/S: CentOS 7.9\n- RAM: 256Gb\n- GPU: NVIDIA\u00ae Tesla\u2122 T4 16GB\n## S/W\n- Writen for Python 3.9+\n- Core Library\n\t- [Pymogo](https://pymongo.readthedocs.io/en/stable/) : 4.5.0\n\t- [Numpy](https://numpy.org/): 1.23.1 \n\t- [Pandas](https://pandas.pydata.org/docs/index.html): 1.4.3\n\t- [Konlpy](https://konlpy.org/ko/latest/index.html): 0.6.0\n\t- [Kiwipiepy](https://bab2min.github.io/kiwipiepy/v0.16.0/kr/): 0.15.2\n - [Gensim](https://radimrehurek.com/gensim/): 4.3.2\n - [scikit-learn](https://scikit-learn.org/stable/): 1.1.2\n - [PyTorch](https://pytorch.org/): 2.0.1\n \n# \ubb38\uc758 \uc0ac\ud56d\n\n\uba54\ub274\uc5bc \uc0ac\uc6a9 \uc911 \ubb38\uc758 \ubc0f \ud53c\ub4dc\ubc31 \uc0ac\ud56d\uc774 \uc788\uc744 \uacbd\uc6b0, \uc544\ub798 Contributors\uc5d0\uac8c \ubb38\uc758\ud574\uc8fc\uc138\uc694.\n\n<h2 align='center'>\ud83d\udcab Contributor \ud83d\udcab</h3>\n\n<table align='center'>\n <tbody>\n <tr>\n <td align=\"center\" valign=\"center\" width=\"14.28%\"><a href=\"mailto:yjkkim@wisenut.co.kr\"><img src=\"https://gitlab.wisenut.kr/uploads/-/system/user/avatar/462/avatar.png?width=96\" width=\"100px;\"/><br/><sub><b>\uae40\uc720\uc9c4</b></sub></a><br/></td>\n <td align=\"center\" valign=\"\" width=\"14.28%\"><a href=\"mailto:sanminpark@wisenut.co.kr\"><img src=\"https://secure.gravatar.com/avatar/33a0c94636917f188fb0635bb38a6477?s=80&d=identicon\" width=\"100px;\"/><br/><sub><b>\ubc15\uc0c1\ubbfc</b></sub></a><br/></td>\n <td align=\"center\" valign=\"\" width=\"14.28%\"><a href=\"mailto:wsc9150@wisenut.co.kr\"><img src=\"https://secure.gravatar.com/avatar/d5ffb9e47011056155303eb085215646?s=192&d=identicon\" width=\"100px;\"/><br/><sub><b>\ucd5c\uc6b0\uc11d</b></sub></a><br/></td>\n <td align=\"center\" valign=\"\" width=\"14.28%\"><a href=\"mailto:kys@wisenut.co.kr\"><img src=\"https://secure.gravatar.com/avatar/d6d45c8ad3c4a13ce3c39961f0b2e10e?s=192&d=identicon\" width=\"100px;\"/><br/><sub><b>\uae40\uc774\uc18c</b></sub></a><br/></td>\n <td align=\"center\" valign=\"\" width=\"14.28%\"><a href=\"mailto:fbthsla@gmail.com\"><img src=\"https://secure.gravatar.com/avatar/07489895da4a15477c28b83ef1a7a7fe?s=192&d=identicon\" width=\"100px;\"/><br/><sub><b>\ub958\uc18c\ud604</b></sub></a><br/></td>\n </tr>\n </tbody>\n</table>\n",
"bugtrack_url": null,
"license": "",
"summary": "Wisenut Data Division Text Analyzer",
"version": "0.0.3",
"project_urls": {
"Download": "https://gitlab.wisenut.kr/sangminpark/INTERNAL_ANALYZER/-/archive/0.0.3/INTERNAL_ANALYZER-0.0.3.tar.gz",
"Homepage": "https://gitlab.wisenut.kr/sangminpark/INTERNAL_ANALYZER"
},
"split_keywords": [
"wisenutdt",
"textanalyzer"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "a95e2d5edd0d177a282034fe786db581d085898ff75bee9d25015a9d4edf520a",
"md5": "a2cb31f79ab748a72282c7bf9ea23841",
"sha256": "052afaa4dc440658095aca57ce95b77b59a7789c31ff9cfea55a12dc358998e8"
},
"downloads": -1,
"filename": "wisenutDTA-0.0.3-py3-none-any.whl",
"has_sig": false,
"md5_digest": "a2cb31f79ab748a72282c7bf9ea23841",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.8",
"size": 2437,
"upload_time": "2023-12-18T06:43:28",
"upload_time_iso_8601": "2023-12-18T06:43:28.474008Z",
"url": "https://files.pythonhosted.org/packages/a9/5e/2d5edd0d177a282034fe786db581d085898ff75bee9d25015a9d4edf520a/wisenutDTA-0.0.3-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2023-12-18 06:43:28",
"github": false,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"lcname": "wisenutdta"
}