<p align="center">
<img src="https://svgshare.com/i/wCo.svg" alt="wizcraft-banner" />
</p>
[![License](https://img.shields.io/badge/license-MIT-blue.svg)](https://opensource.org/licenses/MIT)
[![Downloads](https://static.pepy.tech/personalized-badge/wiz-craft?period=total&units=international_system&left_color=brightgreen&right_color=orange&left_text=Downloads)](https://pepy.tech/project/wiz-craft)
![PyPI - Version](https://img.shields.io/pypi/v/wiz-craft)
# WizCraft - CLI-Based Dataset Preprocessing Tool
WizCraft is a cutting-edge Command Line Interface (CLI) tool developed to simplify the process of dataset preprocessing for machine learning tasks. It aims to provide a seamless and efficient experience for data scientists of all levels, facilitating the preparation of data for various machine-learning applications.
**[Try the tool online here](https://replit.com/@PinakDatta/DataWiz)**
## Table of Contents
- [Features](#features)
- [Getting Started](#getting-started)
- [Installation](#installation)
- [Tasks](#tasks)
- [Data Description](#data-description)
- [Handle Null Values](#handle-null-values)
- [Encode Categorical Values](#encode-categorical-values)
- [Feature Scaling](#feature-scaling)
- [Save Preprocessed Dataset](#save-preprocessed-dataset)
## Features
- Load and preprocess your dataset effortlessly through a Command Line Interface (CLI).
- View dataset statistics, null value counts, and perform data imputation.
- Encode categorical variables using one-hot encoding.
- Normalize and standardize numerical features for better model performance.
- Download the preprocessed dataset with your desired modifications.
## Getting Started
### Installation
1. Run the pip command:
```bash
pip install wiz-craft
2. To use the module, use the commands:
```python
from wizcraft.preprocess import Preprocess
wiz_obj = Preprocess()
wiz_obj.start()
3. Follow the on-screen prompts to load your dataset, select target variables, and perform preprocessing tasks.
<p align="center">
<img src="https://i.imgur.com/jYLwMN7.png" alt="wizcraft-cli_welcome" width = "600" height = "300" />
</p>
## Features Available
### Data Description
<p>
<img src="https://i.imgur.com/2CUMMoX.png" alt="data_description_preview" />
</p>
1. View statistics and properties of numeric columns.
2. Explore unique values and statistics of categorical columns.
3. Display a snapshot of the dataset.
### Handle Null Values
<p>
<img src="https://i.imgur.com/JlkyQl5.png" alt="null_data_preview" />
</p>
1. Show NULL value counts in each column.
2. Remove specific columns or fill NULL values with mean, median, or mode, or even using KNN technique.
### Encode Categorical Values
<p>
<img src="https://i.imgur.com/0gEfhpi.png" alt="one_hot_encode_preview" />
</p>
1. Identify and list categorical columns.
2. Perform one-hot encoding on categorical columns.
### Feature Scaling
<p>
<img src="https://i.imgur.com/kfpoXeG.png" alt="scaling_preview" />
</p>
1. Normalize the data in a column using Min-Max scaling or Standard Scaler.
### Save Preprocessed Dataset
<p>
<img src="https://i.imgur.com/1XywkGQ.png" alt="save_preview" />
</p>
1. Download the modified dataset with applied preprocessing steps.
Raw data
{
"_id": null,
"home_page": "https://github.com/Pinak-Datta/wiz-craft",
"name": "wiz-craft",
"maintainer": "",
"docs_url": null,
"requires_python": "",
"maintainer_email": "",
"keywords": "Dataset preprocessing,Data cleaning,Machine learning,Data manipulation,Data preparation,Data engineering,Feature scaling,One-hot encoding,Data imputation,Null value handling,Data exploration,Data processing,wizcraft,wiz-craft,WizCraft",
"author": "Pinak Datta",
"author_email": "pinakdatta2002@gmail.com",
"download_url": "https://files.pythonhosted.org/packages/2f/54/c86da95d32d9f2f81dfdcb731978eec6c7cb6feb253597b74e04650703e4/wiz-craft-1.1.1.tar.gz",
"platform": null,
"description": "<p align=\"center\">\r\n <img src=\"https://svgshare.com/i/wCo.svg\" alt=\"wizcraft-banner\" />\r\n</p>\r\n\r\n[![License](https://img.shields.io/badge/license-MIT-blue.svg)](https://opensource.org/licenses/MIT) \r\n\r\n[![Downloads](https://static.pepy.tech/personalized-badge/wiz-craft?period=total&units=international_system&left_color=brightgreen&right_color=orange&left_text=Downloads)](https://pepy.tech/project/wiz-craft)\r\n\r\n![PyPI - Version](https://img.shields.io/pypi/v/wiz-craft)\r\n\r\n\r\n# WizCraft - CLI-Based Dataset Preprocessing Tool\r\n\r\nWizCraft is a cutting-edge Command Line Interface (CLI) tool developed to simplify the process of dataset preprocessing for machine learning tasks. It aims to provide a seamless and efficient experience for data scientists of all levels, facilitating the preparation of data for various machine-learning applications.\r\n\r\n**[Try the tool online here](https://replit.com/@PinakDatta/DataWiz)**\r\n\r\n## Table of Contents\r\n\r\n- [Features](#features)\r\n- [Getting Started](#getting-started)\r\n - [Installation](#installation)\r\n- [Tasks](#tasks)\r\n - [Data Description](#data-description)\r\n - [Handle Null Values](#handle-null-values)\r\n - [Encode Categorical Values](#encode-categorical-values)\r\n - [Feature Scaling](#feature-scaling)\r\n - [Save Preprocessed Dataset](#save-preprocessed-dataset)\r\n\r\n\r\n\r\n## Features\r\n\r\n- Load and preprocess your dataset effortlessly through a Command Line Interface (CLI).\r\n- View dataset statistics, null value counts, and perform data imputation.\r\n- Encode categorical variables using one-hot encoding.\r\n- Normalize and standardize numerical features for better model performance.\r\n- Download the preprocessed dataset with your desired modifications.\r\n\r\n## Getting Started\r\n\r\n### Installation\r\n\r\n1. Run the pip command:\r\n ```bash\r\n pip install wiz-craft\r\n\r\n2. To use the module, use the commands:\r\n ```python\r\n from wizcraft.preprocess import Preprocess\r\n wiz_obj = Preprocess()\r\n wiz_obj.start() \r\n\r\n3. Follow the on-screen prompts to load your dataset, select target variables, and perform preprocessing tasks.\r\n\r\n<p align=\"center\">\r\n <img src=\"https://i.imgur.com/jYLwMN7.png\" alt=\"wizcraft-cli_welcome\" width = \"600\" height = \"300\" />\r\n</p>\r\n\r\n## Features Available\r\n\r\n### Data Description\r\n\r\n<p>\r\n <img src=\"https://i.imgur.com/2CUMMoX.png\" alt=\"data_description_preview\" />\r\n</p>\r\n\r\n1. View statistics and properties of numeric columns.\r\n2. Explore unique values and statistics of categorical columns.\r\n3. Display a snapshot of the dataset.\r\n\r\n### Handle Null Values\r\n\r\n<p>\r\n <img src=\"https://i.imgur.com/JlkyQl5.png\" alt=\"null_data_preview\" />\r\n</p>\r\n\r\n1. Show NULL value counts in each column.\r\n2. Remove specific columns or fill NULL values with mean, median, or mode, or even using KNN technique.\r\n### Encode Categorical Values\r\n\r\n<p>\r\n <img src=\"https://i.imgur.com/0gEfhpi.png\" alt=\"one_hot_encode_preview\" />\r\n</p>\r\n\r\n1. Identify and list categorical columns.\r\n2. Perform one-hot encoding on categorical columns.\r\n\r\n### Feature Scaling\r\n\r\n<p>\r\n <img src=\"https://i.imgur.com/kfpoXeG.png\" alt=\"scaling_preview\" />\r\n</p>\r\n\r\n1. Normalize the data in a column using Min-Max scaling or Standard Scaler.\r\n\r\n### Save Preprocessed Dataset\r\n\r\n<p>\r\n <img src=\"https://i.imgur.com/1XywkGQ.png\" alt=\"save_preview\" />\r\n</p>\r\n\r\n1. Download the modified dataset with applied preprocessing steps.\r\n\r\n",
"bugtrack_url": null,
"license": "OSI Approved :: MIT License",
"summary": "A CLI-based dataset preprocessing tool for machine learning tasks. Features include data exploration, null value handling, one-hot encoding, and feature scaling, and download the modified dataset effortlessly.",
"version": "1.1.1",
"project_urls": {
"Homepage": "https://github.com/Pinak-Datta/wiz-craft"
},
"split_keywords": [
"dataset preprocessing",
"data cleaning",
"machine learning",
"data manipulation",
"data preparation",
"data engineering",
"feature scaling",
"one-hot encoding",
"data imputation",
"null value handling",
"data exploration",
"data processing",
"wizcraft",
"wiz-craft",
"wizcraft"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "b98e6e2cfc64d29f43d53ec912c2dff565b119be0f0f1d7218aad3b8ab464a6e",
"md5": "2db01e77e01dde510f5c5392b3ef64ce",
"sha256": "0104cc6ac2955521c3491ca062be00dc8686a8e9c616ebc4e88e11e7c5e18d22"
},
"downloads": -1,
"filename": "wiz_craft-1.1.1-py3-none-any.whl",
"has_sig": false,
"md5_digest": "2db01e77e01dde510f5c5392b3ef64ce",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": null,
"size": 13071,
"upload_time": "2023-10-18T08:32:11",
"upload_time_iso_8601": "2023-10-18T08:32:11.262965Z",
"url": "https://files.pythonhosted.org/packages/b9/8e/6e2cfc64d29f43d53ec912c2dff565b119be0f0f1d7218aad3b8ab464a6e/wiz_craft-1.1.1-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "2f54c86da95d32d9f2f81dfdcb731978eec6c7cb6feb253597b74e04650703e4",
"md5": "bfeaaaaa9215ab3ef3770161121e23b6",
"sha256": "e069c905e05d7a61a8784a78eeb88b58f888102a0461922cb382c279039c203d"
},
"downloads": -1,
"filename": "wiz-craft-1.1.1.tar.gz",
"has_sig": false,
"md5_digest": "bfeaaaaa9215ab3ef3770161121e23b6",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 10026,
"upload_time": "2023-10-18T08:32:14",
"upload_time_iso_8601": "2023-10-18T08:32:14.128747Z",
"url": "https://files.pythonhosted.org/packages/2f/54/c86da95d32d9f2f81dfdcb731978eec6c7cb6feb253597b74e04650703e4/wiz-craft-1.1.1.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2023-10-18 08:32:14",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "Pinak-Datta",
"github_project": "wiz-craft",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"requirements": [],
"lcname": "wiz-craft"
}