wooldridge


Namewooldridge JSON
Version 0.4.5 PyPI version JSON
download
home_pagehttps://github.com/spring-haru/wooldridge
SummaryData sets from Introductory Econometrics: A Modern Approach (7th ed, J.M. Wooldridge)
upload_time2024-07-10 11:00:28
maintainerNone
docs_urlNone
authorTetsu Haruyama
requires_pythonNone
licenseLICENSE
keywords data wooldridge econometrics
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            [![PyPI version fury.io](https://badge.fury.io/py/wooldridge.svg)](https://pypi.python.org/pypi/wooldridge/)
[![CodeQL](https://github.com/spring-haru/wooldridge/actions/workflows/codeql-analysis.yml/badge.svg)](https://github.com/spring-haru/wooldridge/actions?query=workflow%codeql-analysis)
[![Downloads](https://static.pepy.tech/personalized-badge/wooldridge?period=total&units=international_system&left_color=grey&right_color=orange&left_text=Downloads)](https://pepy.tech/project/wooldridge)

# Wooldridge Meets Python
### Data sets from _Introductory Econometrics: A Modern Approach_ (7th ed, J.M. Wooldridge)

## Description
A Python package which contains 111 data sets from one of the most famous **econometrics** textbooks for undergraduates.

It is extensively used in [Pythonで学ぶ入門計量経済学](https://py4etrics.github.io) (Japanese). Its Google-translated version (in the language of your choice) is also available in [Learning Introductory Econometrics with Python](https://translate.google.com/translate?sl=auto&tl=en&u=https://py4etrics.github.io).

It is also used in [Using Python for Introductory Econometrics](http://www.upfie.net), which is a sister book [Using R for Introductory Econometrics](http://www.urfie.net).

## How to Use
First things first.
```
import wooldridge
```
To load a data set named `<dataset>`:
```
wooldridge.data('<dataset>')
```
It returns pandas `DataFrame`. Note that `<dataset>` is entered in strings. For example, to load a data set `mroz` into `df`:
```
df = wooldridge.data('mroz')
```
To show the description (e.g. variable definitions and sources) of a data set:
```
wooldridge.data('mroz', description=True)
```
To show the list of 111 data sets contained in the package
```
wooldridge.data()
```

## How to Install
```
pip install wooldridge
```
or
```
git clone https://github.com/spring-haru/wooldridge.git
pip install .
```

## Note
The function `dataWoo()` introduced in the previous versions also works:
```
from wooldridge import *

df = dataWoo('<dataset>')

dataWoo('<dataset>', description=True)

dataWoo()
```

#### Reference
J.M. Wooldridge (2019) _Introductory Econometrics: A Modern Approach_, Cengage Learning, 7th edition.

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/spring-haru/wooldridge",
    "name": "wooldridge",
    "maintainer": null,
    "docs_url": null,
    "requires_python": null,
    "maintainer_email": null,
    "keywords": "data, wooldridge, econometrics",
    "author": "Tetsu Haruyama",
    "author_email": "tetsu.yes@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/31/6a/80a0b277872bc79aab1120ecfa2ebb91d078d3d90d1b2eb3283db2070972/wooldridge-0.4.5.tar.gz",
    "platform": null,
    "description": "[![PyPI version fury.io](https://badge.fury.io/py/wooldridge.svg)](https://pypi.python.org/pypi/wooldridge/)\n[![CodeQL](https://github.com/spring-haru/wooldridge/actions/workflows/codeql-analysis.yml/badge.svg)](https://github.com/spring-haru/wooldridge/actions?query=workflow%codeql-analysis)\n[![Downloads](https://static.pepy.tech/personalized-badge/wooldridge?period=total&units=international_system&left_color=grey&right_color=orange&left_text=Downloads)](https://pepy.tech/project/wooldridge)\n\n# Wooldridge Meets Python\n### Data sets from _Introductory Econometrics: A Modern Approach_ (7th ed, J.M. Wooldridge)\n\n## Description\nA Python package which contains 111 data sets from one of the most famous **econometrics** textbooks for undergraduates.\n\nIt is extensively used in [Python\u3067\u5b66\u3076\u5165\u9580\u8a08\u91cf\u7d4c\u6e08\u5b66](https://py4etrics.github.io) (Japanese). Its Google-translated version (in the language of your choice) is also available in [Learning Introductory Econometrics with Python](https://translate.google.com/translate?sl=auto&tl=en&u=https://py4etrics.github.io).\n\nIt is also used in [Using Python for Introductory Econometrics](http://www.upfie.net), which is a sister book [Using R for Introductory Econometrics](http://www.urfie.net).\n\n## How to Use\nFirst things first.\n```\nimport wooldridge\n```\nTo load a data set named `<dataset>`:\n```\nwooldridge.data('<dataset>')\n```\nIt returns pandas `DataFrame`. Note that `<dataset>` is entered in strings. For example, to load a data set `mroz` into `df`:\n```\ndf = wooldridge.data('mroz')\n```\nTo show the description (e.g. variable definitions and sources) of a data set:\n```\nwooldridge.data('mroz', description=True)\n```\nTo show the list of 111 data sets contained in the package\n```\nwooldridge.data()\n```\n\n## How to Install\n```\npip install wooldridge\n```\nor\n```\ngit clone https://github.com/spring-haru/wooldridge.git\npip install .\n```\n\n## Note\nThe function `dataWoo()` introduced in the previous versions also works:\n```\nfrom wooldridge import *\n\ndf = dataWoo('<dataset>')\n\ndataWoo('<dataset>', description=True)\n\ndataWoo()\n```\n\n#### Reference\nJ.M. Wooldridge (2019) _Introductory Econometrics: A Modern Approach_, Cengage Learning, 7th edition.\n",
    "bugtrack_url": null,
    "license": "LICENSE",
    "summary": "Data sets from Introductory Econometrics: A Modern Approach (7th ed, J.M. Wooldridge)",
    "version": "0.4.5",
    "project_urls": {
        "Homepage": "https://github.com/spring-haru/wooldridge"
    },
    "split_keywords": [
        "data",
        " wooldridge",
        " econometrics"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "e2788d4ca380f46c8a6eebb646b7a09c9ab394dbd11791a579fc7def8e4882bc",
                "md5": "98c2b702064a48bbda36567d82da98e8",
                "sha256": "100de35c9738d66e1a98a93d894ae361d8c86d9548a4bfc665724ade42f3469b"
            },
            "downloads": -1,
            "filename": "wooldridge-0.4.5-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "98c2b702064a48bbda36567d82da98e8",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 5088335,
            "upload_time": "2024-07-10T11:00:25",
            "upload_time_iso_8601": "2024-07-10T11:00:25.058393Z",
            "url": "https://files.pythonhosted.org/packages/e2/78/8d4ca380f46c8a6eebb646b7a09c9ab394dbd11791a579fc7def8e4882bc/wooldridge-0.4.5-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "316a80a0b277872bc79aab1120ecfa2ebb91d078d3d90d1b2eb3283db2070972",
                "md5": "61cb7668ab9f2f1e97fd4eb01627b9bb",
                "sha256": "5a024a649c71bad8674e5bd406adcda3678e448674c3f3909ef3b32ce695ea81"
            },
            "downloads": -1,
            "filename": "wooldridge-0.4.5.tar.gz",
            "has_sig": false,
            "md5_digest": "61cb7668ab9f2f1e97fd4eb01627b9bb",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 5048748,
            "upload_time": "2024-07-10T11:00:28",
            "upload_time_iso_8601": "2024-07-10T11:00:28.885594Z",
            "url": "https://files.pythonhosted.org/packages/31/6a/80a0b277872bc79aab1120ecfa2ebb91d078d3d90d1b2eb3283db2070972/wooldridge-0.4.5.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-07-10 11:00:28",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "spring-haru",
    "github_project": "wooldridge",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "wooldridge"
}
        
Elapsed time: 0.72335s