[![PyPI version fury.io](https://badge.fury.io/py/wooldridge.svg)](https://pypi.python.org/pypi/wooldridge/)
[![CodeQL](https://github.com/spring-haru/wooldridge/actions/workflows/codeql-analysis.yml/badge.svg)](https://github.com/spring-haru/wooldridge/actions?query=workflow%codeql-analysis)
[![Downloads](https://static.pepy.tech/personalized-badge/wooldridge?period=total&units=international_system&left_color=grey&right_color=orange&left_text=Downloads)](https://pepy.tech/project/wooldridge)
# Wooldridge Meets Python
### Data sets from _Introductory Econometrics: A Modern Approach_ (7th ed, J.M. Wooldridge)
## Description
A Python package which contains 111 data sets from one of the most famous **econometrics** textbooks for undergraduates.
It is extensively used in [Pythonで学ぶ入門計量経済学](https://py4etrics.github.io) (Japanese). Its Google-translated version (in the language of your choice) is also available in [Learning Introductory Econometrics with Python](https://translate.google.com/translate?sl=auto&tl=en&u=https://py4etrics.github.io).
It is also used in [Using Python for Introductory Econometrics](http://www.upfie.net), which is a sister book [Using R for Introductory Econometrics](http://www.urfie.net).
## How to Use
First things first.
```
import wooldridge
```
To load a data set named `<dataset>`:
```
wooldridge.data('<dataset>')
```
It returns pandas `DataFrame`. Note that `<dataset>` is entered in strings. For example, to load a data set `mroz` into `df`:
```
df = wooldridge.data('mroz')
```
To show the description (e.g. variable definitions and sources) of a data set:
```
wooldridge.data('mroz', description=True)
```
To show the list of 111 data sets contained in the package
```
wooldridge.data()
```
## How to Install
```
pip install wooldridge
```
or
```
git clone https://github.com/spring-haru/wooldridge.git
pip install .
```
## Note
The function `dataWoo()` introduced in the previous versions also works:
```
from wooldridge import *
df = dataWoo('<dataset>')
dataWoo('<dataset>', description=True)
dataWoo()
```
#### Reference
J.M. Wooldridge (2019) _Introductory Econometrics: A Modern Approach_, Cengage Learning, 7th edition.
Raw data
{
"_id": null,
"home_page": "https://github.com/spring-haru/wooldridge",
"name": "wooldridge",
"maintainer": null,
"docs_url": null,
"requires_python": null,
"maintainer_email": null,
"keywords": "data, wooldridge, econometrics",
"author": "Tetsu Haruyama",
"author_email": "tetsu.yes@gmail.com",
"download_url": "https://files.pythonhosted.org/packages/31/6a/80a0b277872bc79aab1120ecfa2ebb91d078d3d90d1b2eb3283db2070972/wooldridge-0.4.5.tar.gz",
"platform": null,
"description": "[![PyPI version fury.io](https://badge.fury.io/py/wooldridge.svg)](https://pypi.python.org/pypi/wooldridge/)\n[![CodeQL](https://github.com/spring-haru/wooldridge/actions/workflows/codeql-analysis.yml/badge.svg)](https://github.com/spring-haru/wooldridge/actions?query=workflow%codeql-analysis)\n[![Downloads](https://static.pepy.tech/personalized-badge/wooldridge?period=total&units=international_system&left_color=grey&right_color=orange&left_text=Downloads)](https://pepy.tech/project/wooldridge)\n\n# Wooldridge Meets Python\n### Data sets from _Introductory Econometrics: A Modern Approach_ (7th ed, J.M. Wooldridge)\n\n## Description\nA Python package which contains 111 data sets from one of the most famous **econometrics** textbooks for undergraduates.\n\nIt is extensively used in [Python\u3067\u5b66\u3076\u5165\u9580\u8a08\u91cf\u7d4c\u6e08\u5b66](https://py4etrics.github.io) (Japanese). Its Google-translated version (in the language of your choice) is also available in [Learning Introductory Econometrics with Python](https://translate.google.com/translate?sl=auto&tl=en&u=https://py4etrics.github.io).\n\nIt is also used in [Using Python for Introductory Econometrics](http://www.upfie.net), which is a sister book [Using R for Introductory Econometrics](http://www.urfie.net).\n\n## How to Use\nFirst things first.\n```\nimport wooldridge\n```\nTo load a data set named `<dataset>`:\n```\nwooldridge.data('<dataset>')\n```\nIt returns pandas `DataFrame`. Note that `<dataset>` is entered in strings. For example, to load a data set `mroz` into `df`:\n```\ndf = wooldridge.data('mroz')\n```\nTo show the description (e.g. variable definitions and sources) of a data set:\n```\nwooldridge.data('mroz', description=True)\n```\nTo show the list of 111 data sets contained in the package\n```\nwooldridge.data()\n```\n\n## How to Install\n```\npip install wooldridge\n```\nor\n```\ngit clone https://github.com/spring-haru/wooldridge.git\npip install .\n```\n\n## Note\nThe function `dataWoo()` introduced in the previous versions also works:\n```\nfrom wooldridge import *\n\ndf = dataWoo('<dataset>')\n\ndataWoo('<dataset>', description=True)\n\ndataWoo()\n```\n\n#### Reference\nJ.M. Wooldridge (2019) _Introductory Econometrics: A Modern Approach_, Cengage Learning, 7th edition.\n",
"bugtrack_url": null,
"license": "LICENSE",
"summary": "Data sets from Introductory Econometrics: A Modern Approach (7th ed, J.M. Wooldridge)",
"version": "0.4.5",
"project_urls": {
"Homepage": "https://github.com/spring-haru/wooldridge"
},
"split_keywords": [
"data",
" wooldridge",
" econometrics"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "e2788d4ca380f46c8a6eebb646b7a09c9ab394dbd11791a579fc7def8e4882bc",
"md5": "98c2b702064a48bbda36567d82da98e8",
"sha256": "100de35c9738d66e1a98a93d894ae361d8c86d9548a4bfc665724ade42f3469b"
},
"downloads": -1,
"filename": "wooldridge-0.4.5-py3-none-any.whl",
"has_sig": false,
"md5_digest": "98c2b702064a48bbda36567d82da98e8",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": null,
"size": 5088335,
"upload_time": "2024-07-10T11:00:25",
"upload_time_iso_8601": "2024-07-10T11:00:25.058393Z",
"url": "https://files.pythonhosted.org/packages/e2/78/8d4ca380f46c8a6eebb646b7a09c9ab394dbd11791a579fc7def8e4882bc/wooldridge-0.4.5-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "316a80a0b277872bc79aab1120ecfa2ebb91d078d3d90d1b2eb3283db2070972",
"md5": "61cb7668ab9f2f1e97fd4eb01627b9bb",
"sha256": "5a024a649c71bad8674e5bd406adcda3678e448674c3f3909ef3b32ce695ea81"
},
"downloads": -1,
"filename": "wooldridge-0.4.5.tar.gz",
"has_sig": false,
"md5_digest": "61cb7668ab9f2f1e97fd4eb01627b9bb",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 5048748,
"upload_time": "2024-07-10T11:00:28",
"upload_time_iso_8601": "2024-07-10T11:00:28.885594Z",
"url": "https://files.pythonhosted.org/packages/31/6a/80a0b277872bc79aab1120ecfa2ebb91d078d3d90d1b2eb3283db2070972/wooldridge-0.4.5.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-07-10 11:00:28",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "spring-haru",
"github_project": "wooldridge",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "wooldridge"
}