wordcel


Namewordcel JSON
Version 0.4.2 PyPI version JSON
download
home_pageNone
SummarySwiss army-knife for composing LLM outputs
upload_time2025-07-09 23:40:34
maintainerNone
docs_urlNone
authorAndrew Han
requires_python<4.0,>=3.9
licenseNone
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            <p align="center">
	<img src="assets/sun.jpeg" height="400" />
</p>

# 😶 Wordcel

`wordcel` is a library of functions that provides a set of common tools for working with large language models.

Candidly, it is mostly a set of functions that I myself use on a regular basis — my own personal Swiss army knife. 

## Installation

You can simply `pip install wordcel`.

## Documentation

- [LLM APIs](docs/llms.md): Wrapper functions over the most common LLM APIs.
- [RAG](docs/rag.md): Helper functions for RAG, and a minimal implementation of Anthropic's "Contextual Retrieval" method. 
- [featurize](docs/featurize.md): Helper functions for multithreaded inference over text columns in pandas DataFrames.
- [DAG](docs/dag.md): WordcelDAG is a flexible and extensible framework for defining and executing Directed Acyclic Graphs (DAGs) of data processing tasks, particularly involving LLMs and dataframes. 

There is also a nascent CLI. `wordcel --help`:

```
Usage: wordcel [OPTIONS] COMMAND [ARGS]...

  Wordcel CLI.

Options:
  --help  Show this message and exit.

Commands:
  dag  WordcelDAG commands.
```
            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "wordcel",
    "maintainer": null,
    "docs_url": null,
    "requires_python": "<4.0,>=3.9",
    "maintainer_email": null,
    "keywords": null,
    "author": "Andrew Han",
    "author_email": "handrew11@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/7c/79/1fbd15c09f74d3d2c41b994edeea6d1abc2c5a4755a1bce37faa8c90e916/wordcel-0.4.2.tar.gz",
    "platform": null,
    "description": "<p align=\"center\">\n\t<img src=\"assets/sun.jpeg\" height=\"400\" />\n</p>\n\n# \ud83d\ude36 Wordcel\n\n`wordcel` is a library of functions that provides a set of common tools for working with large language models.\n\nCandidly, it is mostly a set of functions that I myself use on a regular basis \u2014 my own personal Swiss army knife. \n\n## Installation\n\nYou can simply `pip install wordcel`.\n\n## Documentation\n\n- [LLM APIs](docs/llms.md): Wrapper functions over the most common LLM APIs.\n- [RAG](docs/rag.md): Helper functions for RAG, and a minimal implementation of Anthropic's \"Contextual Retrieval\" method. \n- [featurize](docs/featurize.md): Helper functions for multithreaded inference over text columns in pandas DataFrames.\n- [DAG](docs/dag.md): WordcelDAG is a flexible and extensible framework for defining and executing Directed Acyclic Graphs (DAGs) of data processing tasks, particularly involving LLMs and dataframes. \n\nThere is also a nascent CLI. `wordcel --help`:\n\n```\nUsage: wordcel [OPTIONS] COMMAND [ARGS]...\n\n  Wordcel CLI.\n\nOptions:\n  --help  Show this message and exit.\n\nCommands:\n  dag  WordcelDAG commands.\n```",
    "bugtrack_url": null,
    "license": null,
    "summary": "Swiss army-knife for composing LLM outputs",
    "version": "0.4.2",
    "project_urls": null,
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "738992b778a040787f68c45d8af8b69bcddc6f96155d94f0f37d165aed5ea49d",
                "md5": "3a1b3a9d6526ca660c0357dcc087be04",
                "sha256": "c67d1bd8d0195b163055ab00045b19dc9184acdcce6f6632103956c95295aa9b"
            },
            "downloads": -1,
            "filename": "wordcel-0.4.2-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "3a1b3a9d6526ca660c0357dcc087be04",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": "<4.0,>=3.9",
            "size": 46915,
            "upload_time": "2025-07-09T23:40:33",
            "upload_time_iso_8601": "2025-07-09T23:40:33.285359Z",
            "url": "https://files.pythonhosted.org/packages/73/89/92b778a040787f68c45d8af8b69bcddc6f96155d94f0f37d165aed5ea49d/wordcel-0.4.2-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "7c791fbd15c09f74d3d2c41b994edeea6d1abc2c5a4755a1bce37faa8c90e916",
                "md5": "0d56424e4ced843531f6091c3a2c446f",
                "sha256": "9046671b4937f7b48d16ea37d6cc20ae009923a73e00578adb2957a72debbc3b"
            },
            "downloads": -1,
            "filename": "wordcel-0.4.2.tar.gz",
            "has_sig": false,
            "md5_digest": "0d56424e4ced843531f6091c3a2c446f",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": "<4.0,>=3.9",
            "size": 38801,
            "upload_time": "2025-07-09T23:40:34",
            "upload_time_iso_8601": "2025-07-09T23:40:34.748258Z",
            "url": "https://files.pythonhosted.org/packages/7c/79/1fbd15c09f74d3d2c41b994edeea6d1abc2c5a4755a1bce37faa8c90e916/wordcel-0.4.2.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-07-09 23:40:34",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "wordcel"
}
        
Elapsed time: 1.63457s