wordcel


Namewordcel JSON
Version 0.2.57 PyPI version JSON
download
home_pageNone
SummarySwiss army-knife for composing LLM outputs
upload_time2024-12-08 20:45:25
maintainerNone
docs_urlNone
authorAndrew Han
requires_python<4.0,>=3.9
licenseNone
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            <p align="center">
	<img src="assets/sun.jpeg" height="400" />
</p>

# 😶 Wordcel

`wordcel` is a library of functions that provides a set of common tools for working with large language models.

Candidly, it is mostly a set of functions that I myself use on a regular basis — my own personal Swiss army knife. 

## Installation

You can simply `pip install wordcel`.

## Documentation

- [LLM APIs](docs/llms.md): Wrapper functions over the most common LLM APIs.
- [RAG](docs/rag.md): Helper functions for RAG, and a minimal implementation of Anthropic's "Contextual Retrieval" method. 
- [featurize](docs/featurize.md): Helper functions for multithreaded inference over text columns in pandas DataFrames.
- [DAG](docs/dag.md): WordcelDAG is a flexible and extensible framework for defining and executing Directed Acyclic Graphs (DAGs) of data processing tasks, particularly involving LLMs and dataframes. 

There is also a nascent CLI. `wordcel --help`:

```
Usage: wordcel [OPTIONS] COMMAND [ARGS]...

  Wordcel CLI.

Options:
  --help  Show this message and exit.

Commands:
  dag  WordcelDAG commands.
```
            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "wordcel",
    "maintainer": null,
    "docs_url": null,
    "requires_python": "<4.0,>=3.9",
    "maintainer_email": null,
    "keywords": null,
    "author": "Andrew Han",
    "author_email": "handrew11@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/15/75/ccd4605b2596c928de85fe061931b024168dab73fff7f90a13fc2fa76503/wordcel-0.2.57.tar.gz",
    "platform": null,
    "description": "<p align=\"center\">\n\t<img src=\"assets/sun.jpeg\" height=\"400\" />\n</p>\n\n# \ud83d\ude36 Wordcel\n\n`wordcel` is a library of functions that provides a set of common tools for working with large language models.\n\nCandidly, it is mostly a set of functions that I myself use on a regular basis \u2014 my own personal Swiss army knife. \n\n## Installation\n\nYou can simply `pip install wordcel`.\n\n## Documentation\n\n- [LLM APIs](docs/llms.md): Wrapper functions over the most common LLM APIs.\n- [RAG](docs/rag.md): Helper functions for RAG, and a minimal implementation of Anthropic's \"Contextual Retrieval\" method. \n- [featurize](docs/featurize.md): Helper functions for multithreaded inference over text columns in pandas DataFrames.\n- [DAG](docs/dag.md): WordcelDAG is a flexible and extensible framework for defining and executing Directed Acyclic Graphs (DAGs) of data processing tasks, particularly involving LLMs and dataframes. \n\nThere is also a nascent CLI. `wordcel --help`:\n\n```\nUsage: wordcel [OPTIONS] COMMAND [ARGS]...\n\n  Wordcel CLI.\n\nOptions:\n  --help  Show this message and exit.\n\nCommands:\n  dag  WordcelDAG commands.\n```",
    "bugtrack_url": null,
    "license": null,
    "summary": "Swiss army-knife for composing LLM outputs",
    "version": "0.2.57",
    "project_urls": null,
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "d686411a823b23b66446699c75172ce0027f48005f0f96f8872cdfa2a4d2a5d8",
                "md5": "abc2a9dc683eaa86bf5bdf959262ac6c",
                "sha256": "b47bcc1fc0078f435c198f9e6ae111ea95f01d68d73d30de75ad63217172dfae"
            },
            "downloads": -1,
            "filename": "wordcel-0.2.57-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "abc2a9dc683eaa86bf5bdf959262ac6c",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": "<4.0,>=3.9",
            "size": 26171,
            "upload_time": "2024-12-08T20:45:23",
            "upload_time_iso_8601": "2024-12-08T20:45:23.363540Z",
            "url": "https://files.pythonhosted.org/packages/d6/86/411a823b23b66446699c75172ce0027f48005f0f96f8872cdfa2a4d2a5d8/wordcel-0.2.57-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "1575ccd4605b2596c928de85fe061931b024168dab73fff7f90a13fc2fa76503",
                "md5": "e57c1cb8f66dc32bedf9e9cfcbd4703e",
                "sha256": "6e71a0df3a06e79b35e0bd65460f70c1776256bc2cc9e60ed2df9a4909b31caa"
            },
            "downloads": -1,
            "filename": "wordcel-0.2.57.tar.gz",
            "has_sig": false,
            "md5_digest": "e57c1cb8f66dc32bedf9e9cfcbd4703e",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": "<4.0,>=3.9",
            "size": 22594,
            "upload_time": "2024-12-08T20:45:25",
            "upload_time_iso_8601": "2024-12-08T20:45:25.063186Z",
            "url": "https://files.pythonhosted.org/packages/15/75/ccd4605b2596c928de85fe061931b024168dab73fff7f90a13fc2fa76503/wordcel-0.2.57.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-12-08 20:45:25",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "wordcel"
}
        
Elapsed time: 0.41073s