Name | wordcel JSON |
Version |
0.2.57
JSON |
| download |
home_page | None |
Summary | Swiss army-knife for composing LLM outputs |
upload_time | 2024-12-08 20:45:25 |
maintainer | None |
docs_url | None |
author | Andrew Han |
requires_python | <4.0,>=3.9 |
license | None |
keywords |
|
VCS |
|
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
<p align="center">
<img src="assets/sun.jpeg" height="400" />
</p>
# 😶 Wordcel
`wordcel` is a library of functions that provides a set of common tools for working with large language models.
Candidly, it is mostly a set of functions that I myself use on a regular basis — my own personal Swiss army knife.
## Installation
You can simply `pip install wordcel`.
## Documentation
- [LLM APIs](docs/llms.md): Wrapper functions over the most common LLM APIs.
- [RAG](docs/rag.md): Helper functions for RAG, and a minimal implementation of Anthropic's "Contextual Retrieval" method.
- [featurize](docs/featurize.md): Helper functions for multithreaded inference over text columns in pandas DataFrames.
- [DAG](docs/dag.md): WordcelDAG is a flexible and extensible framework for defining and executing Directed Acyclic Graphs (DAGs) of data processing tasks, particularly involving LLMs and dataframes.
There is also a nascent CLI. `wordcel --help`:
```
Usage: wordcel [OPTIONS] COMMAND [ARGS]...
Wordcel CLI.
Options:
--help Show this message and exit.
Commands:
dag WordcelDAG commands.
```
Raw data
{
"_id": null,
"home_page": null,
"name": "wordcel",
"maintainer": null,
"docs_url": null,
"requires_python": "<4.0,>=3.9",
"maintainer_email": null,
"keywords": null,
"author": "Andrew Han",
"author_email": "handrew11@gmail.com",
"download_url": "https://files.pythonhosted.org/packages/15/75/ccd4605b2596c928de85fe061931b024168dab73fff7f90a13fc2fa76503/wordcel-0.2.57.tar.gz",
"platform": null,
"description": "<p align=\"center\">\n\t<img src=\"assets/sun.jpeg\" height=\"400\" />\n</p>\n\n# \ud83d\ude36 Wordcel\n\n`wordcel` is a library of functions that provides a set of common tools for working with large language models.\n\nCandidly, it is mostly a set of functions that I myself use on a regular basis \u2014 my own personal Swiss army knife. \n\n## Installation\n\nYou can simply `pip install wordcel`.\n\n## Documentation\n\n- [LLM APIs](docs/llms.md): Wrapper functions over the most common LLM APIs.\n- [RAG](docs/rag.md): Helper functions for RAG, and a minimal implementation of Anthropic's \"Contextual Retrieval\" method. \n- [featurize](docs/featurize.md): Helper functions for multithreaded inference over text columns in pandas DataFrames.\n- [DAG](docs/dag.md): WordcelDAG is a flexible and extensible framework for defining and executing Directed Acyclic Graphs (DAGs) of data processing tasks, particularly involving LLMs and dataframes. \n\nThere is also a nascent CLI. `wordcel --help`:\n\n```\nUsage: wordcel [OPTIONS] COMMAND [ARGS]...\n\n Wordcel CLI.\n\nOptions:\n --help Show this message and exit.\n\nCommands:\n dag WordcelDAG commands.\n```",
"bugtrack_url": null,
"license": null,
"summary": "Swiss army-knife for composing LLM outputs",
"version": "0.2.57",
"project_urls": null,
"split_keywords": [],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "d686411a823b23b66446699c75172ce0027f48005f0f96f8872cdfa2a4d2a5d8",
"md5": "abc2a9dc683eaa86bf5bdf959262ac6c",
"sha256": "b47bcc1fc0078f435c198f9e6ae111ea95f01d68d73d30de75ad63217172dfae"
},
"downloads": -1,
"filename": "wordcel-0.2.57-py3-none-any.whl",
"has_sig": false,
"md5_digest": "abc2a9dc683eaa86bf5bdf959262ac6c",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": "<4.0,>=3.9",
"size": 26171,
"upload_time": "2024-12-08T20:45:23",
"upload_time_iso_8601": "2024-12-08T20:45:23.363540Z",
"url": "https://files.pythonhosted.org/packages/d6/86/411a823b23b66446699c75172ce0027f48005f0f96f8872cdfa2a4d2a5d8/wordcel-0.2.57-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "1575ccd4605b2596c928de85fe061931b024168dab73fff7f90a13fc2fa76503",
"md5": "e57c1cb8f66dc32bedf9e9cfcbd4703e",
"sha256": "6e71a0df3a06e79b35e0bd65460f70c1776256bc2cc9e60ed2df9a4909b31caa"
},
"downloads": -1,
"filename": "wordcel-0.2.57.tar.gz",
"has_sig": false,
"md5_digest": "e57c1cb8f66dc32bedf9e9cfcbd4703e",
"packagetype": "sdist",
"python_version": "source",
"requires_python": "<4.0,>=3.9",
"size": 22594,
"upload_time": "2024-12-08T20:45:25",
"upload_time_iso_8601": "2024-12-08T20:45:25.063186Z",
"url": "https://files.pythonhosted.org/packages/15/75/ccd4605b2596c928de85fe061931b024168dab73fff7f90a13fc2fa76503/wordcel-0.2.57.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-12-08 20:45:25",
"github": false,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"lcname": "wordcel"
}