wordlyzer3


Namewordlyzer3 JSON
Version 0.3 PyPI version JSON
download
home_pagehttps://github.com/NuricoVicyyanto/wordlyzer.git
SummaryA simple library for text analysis
upload_time2024-12-10 02:26:52
maintainerNone
docs_urlNone
authorNurico Vicyyanto
requires_pythonNone
licenseMIT
keywords text analysis python library
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Wordlyzer

Wordlyzer is a powerful Python library for text analysis, providing comprehensive insights into text metrics and properties.

## Installation

Install Wordlyzer using pip:

```bash
pip install wordlyzer3==0.3
```

## Features

- Word count analysis
- Sentence count calculation
- Paragraph count detection
- Character count measurement
- Most common words identification
- Average word length computation
- Average sentence length calculation

## Quick Start

```python
# File: main.py
from wordlyzer3 import WordLyzer

# Example text for analysis
text = """Python is an amazing programming language. It's widely used for web development, data analysis, and AI.

This is a second paragraph."""

# Create analyzer object
analyzer = WordLyzer(text)

# Display analysis results
print("Word Count:", analyzer.word_count())
print("Sentence Count:", analyzer.sentence_count())
print("Paragraph Count:", analyzer.paragraph_count())
print("Character Count:", analyzer.character_count())
print("Most Common Words:", analyzer.most_common_words())
print("Average Word Length:", analyzer.average_word_length())
print("Average Sentence Length:", analyzer.average_sentence_length())
```

## Methods

### `word_count()`
Returns the total number of words in the text.

### `sentence_count()`
Returns the number of sentences in the text.

### `paragraph_count()`
Returns the number of paragraphs in the text.

### `character_count()`
Returns the total number of characters in the text.

### `most_common_words(n=5)`
Returns the `n` most frequently occurring words in the text.
- Default is top 5 words
- Optional parameter to specify number of words

### `average_word_length()`
Calculates the average length of words in the text.

### `average_sentence_length()`
Calculates the average number of words per sentence.

## Requirements

- Python 3.7+
- No external dependencies

## License

MIT License

## Contributing

Contributions are welcome! Please feel free to submit a Pull Request.

## Author

[Nurico Vicyyanto]

## Support

For issues or questions, please open an issue on our GitHub repository.

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/NuricoVicyyanto/wordlyzer.git",
    "name": "wordlyzer3",
    "maintainer": null,
    "docs_url": null,
    "requires_python": null,
    "maintainer_email": null,
    "keywords": "text, analysis, python, library",
    "author": "Nurico Vicyyanto",
    "author_email": "nuricovicyyanto@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/a1/44/7a71b2eac17b7feeb4a575461e8609f70c92c7f4e6a05e8322ebe7e134fb/wordlyzer3-0.3.tar.gz",
    "platform": null,
    "description": "# Wordlyzer\n\nWordlyzer is a powerful Python library for text analysis, providing comprehensive insights into text metrics and properties.\n\n## Installation\n\nInstall Wordlyzer using pip:\n\n```bash\npip install wordlyzer3==0.3\n```\n\n## Features\n\n- Word count analysis\n- Sentence count calculation\n- Paragraph count detection\n- Character count measurement\n- Most common words identification\n- Average word length computation\n- Average sentence length calculation\n\n## Quick Start\n\n```python\n# File: main.py\nfrom wordlyzer3 import WordLyzer\n\n# Example text for analysis\ntext = \"\"\"Python is an amazing programming language. It's widely used for web development, data analysis, and AI.\n\nThis is a second paragraph.\"\"\"\n\n# Create analyzer object\nanalyzer = WordLyzer(text)\n\n# Display analysis results\nprint(\"Word Count:\", analyzer.word_count())\nprint(\"Sentence Count:\", analyzer.sentence_count())\nprint(\"Paragraph Count:\", analyzer.paragraph_count())\nprint(\"Character Count:\", analyzer.character_count())\nprint(\"Most Common Words:\", analyzer.most_common_words())\nprint(\"Average Word Length:\", analyzer.average_word_length())\nprint(\"Average Sentence Length:\", analyzer.average_sentence_length())\n```\n\n## Methods\n\n### `word_count()`\nReturns the total number of words in the text.\n\n### `sentence_count()`\nReturns the number of sentences in the text.\n\n### `paragraph_count()`\nReturns the number of paragraphs in the text.\n\n### `character_count()`\nReturns the total number of characters in the text.\n\n### `most_common_words(n=5)`\nReturns the `n` most frequently occurring words in the text.\n- Default is top 5 words\n- Optional parameter to specify number of words\n\n### `average_word_length()`\nCalculates the average length of words in the text.\n\n### `average_sentence_length()`\nCalculates the average number of words per sentence.\n\n## Requirements\n\n- Python 3.7+\n- No external dependencies\n\n## License\n\nMIT License\n\n## Contributing\n\nContributions are welcome! Please feel free to submit a Pull Request.\n\n## Author\n\n[Nurico Vicyyanto]\n\n## Support\n\nFor issues or questions, please open an issue on our GitHub repository.\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "A simple library for text analysis",
    "version": "0.3",
    "project_urls": {
        "Documentation": "https://packaging.python.org/tutorials/distributing-packages/",
        "Download": "https://github.com/nuricovicyyanto/wordlyzer/archive/v_01.tar.gz",
        "Funding": "https://donate.pypi.org",
        "Homepage": "https://github.com/NuricoVicyyanto/wordlyzer.git",
        "Say Thanks!": "http://saythanks.io/to/nuricovicyyanto",
        "Source": "https://github.com/nuricovicyyanto/wordlyzer",
        "Tracker": "https://github.com/nuricovicyyanto/wordlyzer/issues"
    },
    "split_keywords": [
        "text",
        " analysis",
        " python",
        " library"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "a1447a71b2eac17b7feeb4a575461e8609f70c92c7f4e6a05e8322ebe7e134fb",
                "md5": "5fa352f8fb3c90f731d57e2ec55f7662",
                "sha256": "9aff1490cc7e32b27b3071933b62d70aab2bbe845675fe90d327db552a8fadb4"
            },
            "downloads": -1,
            "filename": "wordlyzer3-0.3.tar.gz",
            "has_sig": false,
            "md5_digest": "5fa352f8fb3c90f731d57e2ec55f7662",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 4083,
            "upload_time": "2024-12-10T02:26:52",
            "upload_time_iso_8601": "2024-12-10T02:26:52.730903Z",
            "url": "https://files.pythonhosted.org/packages/a1/44/7a71b2eac17b7feeb4a575461e8609f70c92c7f4e6a05e8322ebe7e134fb/wordlyzer3-0.3.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-12-10 02:26:52",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "NuricoVicyyanto",
    "github_project": "wordlyzer",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "wordlyzer3"
}
        
Elapsed time: 0.40178s