# probability-of-a-word
[![CircleCI](https://circleci.com/gh/tpimentelms/probability-of-a-word.svg?style=svg)](https://circleci.com/gh/tpimentelms/probability-of-a-word)
Code to compute a word's probability using the fixes from "How to Compute the Probability of a Word"
### Installation
You can install WordsProbability directly from PyPI:
`pip install wordsprobability`
Or from source:
```
git clone git@github.com:tpimentelms/probability-of-a-word.git
cd probability-of-a-word
pip install -e .
```
#### Dependencies
WordsProbability has the following requirements:
* [Pandas](https://pandas.pydata.org)
* [PyTorch](https://pytorch.org)
* [Transformers](https://huggingface.co/docs/transformers/en/index)
### Usage
#### Basic Usage
Install this repository. Then run:
```bash
$ wordsprobability --model pythia-70m --input examples/abstract.txt --output temp.tsv
```
The input must be a txt file, with one sequence per line.
The output will be a tsv file with a word per row with its respective computed `surprisal` values.
To also get computed `surprisal_buggy` values (without our paper's correction) use the optional flag `--return-buggy-surprisals`.
Currently, supported models are: `pythia-70m`, `pythia-160m`, `pythia-410m`, `pythia-14b`, `pythia-28b`, `pythia-69b`, `pythia-120b`, `gpt2-small`, `gpt2-medium`, `gpt2-large`, `gpt2-xl`.
The code
#### Using in other Applications
Import wordsprobability in your application and get surprisals with:
```python
from wordsprobability import get_surprisal_per_word
df = get_surprisal_per_word(text='Hello world! Who are you???\nWho am I?', model_name='pythia-70m')
```
## Extra Information
#### Citation
If this code or the paper were usefull to you, consider citing it:
```bibtex
@article{pimentel-etal-2024-howto,
title = "How to Compute the Probability of a Word",
author = "Pimentel, Tiago and
Meister, Clara",
year = "2024",
eprint = {2406.14561},
archivePrefix = {arXiv},
primaryClass = {cs.CL},
url = {https://arxiv.org/abs/2406.14561},
journal = "arXiv preprint arXiv:2406.14561",
}
```
#### Contact
To ask questions or report problems, please open an [issue](https://github.com/tpimentelms/probability-of-a-word/issues).
Raw data
{
"_id": null,
"home_page": "https://github.com/tpimentelms/probability-of-a-word",
"name": "wordsprobability",
"maintainer": null,
"docs_url": null,
"requires_python": null,
"maintainer_email": null,
"keywords": "language modelling surprisal word tokenisation probability",
"author": "Tiago Pimentel and Clara Meister",
"author_email": "tpimentelms@gmail.com",
"download_url": "https://files.pythonhosted.org/packages/72/62/2a99ec06452435a991282fe83d551035111c8a13d2b9400fd494f146da55/wordsprobability-0.17.tar.gz",
"platform": null,
"description": "# probability-of-a-word\n\n[![CircleCI](https://circleci.com/gh/tpimentelms/probability-of-a-word.svg?style=svg)](https://circleci.com/gh/tpimentelms/probability-of-a-word)\n\nCode to compute a word's probability using the fixes from \"How to Compute the Probability of a Word\"\n\n\n### Installation\n\nYou can install WordsProbability directly from PyPI:\n\n`pip install wordsprobability`\n\nOr from source:\n\n```\ngit clone git@github.com:tpimentelms/probability-of-a-word.git\ncd probability-of-a-word\npip install -e .\n```\n\n#### Dependencies\n\nWordsProbability has the following requirements:\n\n* [Pandas](https://pandas.pydata.org)\n* [PyTorch](https://pytorch.org)\n* [Transformers](https://huggingface.co/docs/transformers/en/index)\n\n### Usage\n\n#### Basic Usage\n\nInstall this repository. Then run:\n```bash\n$ wordsprobability --model pythia-70m --input examples/abstract.txt --output temp.tsv\n```\n\nThe input must be a txt file, with one sequence per line.\nThe output will be a tsv file with a word per row with its respective computed `surprisal` values.\nTo also get computed `surprisal_buggy` values (without our paper's correction) use the optional flag `--return-buggy-surprisals`.\nCurrently, supported models are: `pythia-70m`, `pythia-160m`, `pythia-410m`, `pythia-14b`, `pythia-28b`, `pythia-69b`, `pythia-120b`, `gpt2-small`, `gpt2-medium`, `gpt2-large`, `gpt2-xl`.\nThe code\n\n#### Using in other Applications\n\nImport wordsprobability in your application and get surprisals with:\n```python\n from wordsprobability import get_surprisal_per_word\n df = get_surprisal_per_word(text='Hello world! Who are you???\\nWho am I?', model_name='pythia-70m')\n```\n\n\n## Extra Information\n\n#### Citation\n\nIf this code or the paper were usefull to you, consider citing it:\n\n\n```bibtex\n@article{pimentel-etal-2024-howto,\n title = \"How to Compute the Probability of a Word\",\n author = \"Pimentel, Tiago and\n Meister, Clara\",\n year = \"2024\",\n eprint = {2406.14561},\n archivePrefix = {arXiv},\n primaryClass = {cs.CL},\n url = {https://arxiv.org/abs/2406.14561},\n journal = \"arXiv preprint arXiv:2406.14561\",\n}\n```\n\n\n#### Contact\n\nTo ask questions or report problems, please open an [issue](https://github.com/tpimentelms/probability-of-a-word/issues).\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "Method to get a words probability with fixes from How to Compute the Probability of a Word.",
"version": "0.17",
"project_urls": {
"Homepage": "https://github.com/tpimentelms/probability-of-a-word"
},
"split_keywords": [
"language",
"modelling",
"surprisal",
"word",
"tokenisation",
"probability"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "9b5f43a3c191154aa19ec08acfe53db14ff4c866c0f9774091cea97376ce6fb4",
"md5": "096909062635a4dfafc8ed12fe1b7b0b",
"sha256": "7a4bc6ad27160bc5795d1e17aa379c26d0760691101a2517f4eb5b4cb46f928b"
},
"downloads": -1,
"filename": "wordsprobability-0.17-py3-none-any.whl",
"has_sig": false,
"md5_digest": "096909062635a4dfafc8ed12fe1b7b0b",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": null,
"size": 8150,
"upload_time": "2024-07-10T13:28:29",
"upload_time_iso_8601": "2024-07-10T13:28:29.707388Z",
"url": "https://files.pythonhosted.org/packages/9b/5f/43a3c191154aa19ec08acfe53db14ff4c866c0f9774091cea97376ce6fb4/wordsprobability-0.17-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "72622a99ec06452435a991282fe83d551035111c8a13d2b9400fd494f146da55",
"md5": "2fdc9b9ad8c1d43fb639da821dfe6031",
"sha256": "9554a8d84e98c414acd44465b699ccd91bf6f3e20de7ef074a35232b3fffa9e9"
},
"downloads": -1,
"filename": "wordsprobability-0.17.tar.gz",
"has_sig": false,
"md5_digest": "2fdc9b9ad8c1d43fb639da821dfe6031",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 7954,
"upload_time": "2024-07-10T13:28:31",
"upload_time_iso_8601": "2024-07-10T13:28:31.220931Z",
"url": "https://files.pythonhosted.org/packages/72/62/2a99ec06452435a991282fe83d551035111c8a13d2b9400fd494f146da55/wordsprobability-0.17.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-07-10 13:28:31",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "tpimentelms",
"github_project": "probability-of-a-word",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"circle": true,
"lcname": "wordsprobability"
}