wordtm 0.4.6
============
An NLP package for topic modeling on the Holy Scripture and other text
from low-code to pro-code
Installation
------------
.. code:: shell
$ pip install wordtm
Usage
-----
``wordtm`` can be used to perform some NLP pre-processing tasks, text
exploration, including Chinese one, text visualization (word cloud), and
topic modeling (BERTopic, LDA and NMF) as follows:
.. code:: python
from wordtm import meta, util, ta, tm, viz, pivot, quot
version Submodule
~~~~~~~~~~~~~~~~~
Provides some version information.
.. code:: python
import wordtm
print(wordtm.__version__)
meta Submodule
~~~~~~~~~~~~~~
Provides extracting source code of ``wordtm`` module and adding timing and code-showing features
to all functions of the module.
.. code:: python
print(meta.get_module_info())
print(meta.get_module_info(detailed=True))
meta.addin_all()
quot Submodule
~~~~~~~~~~~~~~
Provides functions to extract the quotation source Scripture in OT based on the presribed NT Scripture.
.. code:: python
cdf = util.load_word('cuv.csv')
crom8 = util.extract2(cdf, 'Rom 8')
quot.show_quot(crom8, lang='chi')
pivot Submodule
~~~~~~~~~~~~~~~
Provides a pivot table of the prescribed text.
.. code:: python
cdf = util.load_word('cuv.csv')
pivot.stat(cdf, chi=True)
ta Submodule
~~~~~~~~~~~~
Provides text analytics functions, including extracting the summarization of the prescribed text.
.. code:: python
cdf = util.load_word('cuv.csv')
crom8 = util.extract2(cdf, 'Rom 8')
ta.summary(rom8, code=True)
tm Submodule
~~~~~~~~~~~~~
Provides text modeling functions, including LDA, NMF and BERTopics modeling.
.. code:: python
lda = tm.lda_process("cuv.csv", chi=True, eval=True, timing=True)
nmf = tm.nmf_process("cuv.csv", chi=True, eval=True, code=1)
btm = tm.btm_process("cuv.csv", chi=True, cat='nt', eval=True)
util Submodule
~~~~~~~~~~~~~~
Provides loading text and text preprocessing functions.
.. code:: python
df = util.load_word()
cdf = util.load_word('cuv.csv')
df.head()
cdf.head()
rom8 = util.extract2(df, 'Rom 8')
crom8 = util.extract2(cdf, 'Rom 8')
viz Submodule
~~~~~~~~~~~~~
Wordcloud plotting from the prescribed text.
.. code:: python
cdf = util.load_word('cuv.csv')
viz.chi_wordcloud(cdf)
Contributing
------------
Interested in contributing? Check out the contributing guidelines.
Please note that this project is released with a Code of Conduct. By
contributing to this project, you agree to abide by its terms.
License
-------
``wordtm`` was created by Johnny Cheng. It is licensed under the terms
of the MIT license.
Credits
-------
``wordtm`` was created under the guidance of Jehovah, the Lord.
Raw data
{
"_id": null,
"home_page": "",
"name": "wordtm",
"maintainer": "",
"docs_url": null,
"requires_python": "",
"maintainer_email": "",
"keywords": "word,scripture,topic modeling,visualization,low-code,pro-code,network analysis,BERTopic,LDA,NFM",
"author": "Dr. Johnny CHENG",
"author_email": "<drjohnnycheng@gmail.com>",
"download_url": "https://files.pythonhosted.org/packages/6c/33/f330615a8873af446386d2d7ae7c6707f2272f684ef85b1cb2f4eeb4b565/wordtm-0.4.6.tar.gz",
"platform": null,
"description": "wordtm 0.4.6\r\n============\r\n\r\nAn NLP package for topic modeling on the Holy Scripture and other text\r\nfrom low-code to pro-code\r\n\r\nInstallation\r\n------------\r\n\r\n.. code:: shell\r\n\r\n $ pip install wordtm\r\n\r\nUsage\r\n-----\r\n\r\n``wordtm`` can be used to perform some NLP pre-processing tasks, text\r\nexploration, including Chinese one, text visualization (word cloud), and\r\ntopic modeling (BERTopic, LDA and NMF) as follows:\r\n\r\n.. code:: python\r\n\r\n from wordtm import meta, util, ta, tm, viz, pivot, quot\r\n\r\nversion Submodule\r\n~~~~~~~~~~~~~~~~~\r\n\r\nProvides some version information.\r\n\r\n.. code:: python\r\n\r\n import wordtm\r\n print(wordtm.__version__)\r\n\r\nmeta Submodule\r\n~~~~~~~~~~~~~~\r\n\r\nProvides extracting source code of ``wordtm`` module and adding timing and code-showing features\r\nto all functions of the module.\r\n\r\n.. code:: python\r\n\r\n print(meta.get_module_info())\r\n\r\n print(meta.get_module_info(detailed=True))\r\n\r\n meta.addin_all()\r\n\r\nquot Submodule\r\n~~~~~~~~~~~~~~\r\n\r\nProvides functions to extract the quotation source Scripture in OT based on the presribed NT Scripture.\r\n\r\n.. code:: python\r\n\r\n cdf = util.load_word('cuv.csv')\r\n crom8 = util.extract2(cdf, 'Rom 8')\r\n \r\n quot.show_quot(crom8, lang='chi')\r\n\r\npivot Submodule\r\n~~~~~~~~~~~~~~~\r\n\r\nProvides a pivot table of the prescribed text.\r\n\r\n.. code:: python\r\n\r\n cdf = util.load_word('cuv.csv')\r\n\r\n pivot.stat(cdf, chi=True)\r\n\r\nta Submodule\r\n~~~~~~~~~~~~\r\n\r\nProvides text analytics functions, including extracting the summarization of the prescribed text.\r\n\r\n.. code:: python\r\n\r\n cdf = util.load_word('cuv.csv')\r\n crom8 = util.extract2(cdf, 'Rom 8')\r\n\r\n ta.summary(rom8, code=True)\r\n\r\ntm Submodule\r\n~~~~~~~~~~~~~\r\n\r\nProvides text modeling functions, including LDA, NMF and BERTopics modeling.\r\n\r\n.. code:: python\r\n\r\n lda = tm.lda_process(\"cuv.csv\", chi=True, eval=True, timing=True)\r\n\r\n nmf = tm.nmf_process(\"cuv.csv\", chi=True, eval=True, code=1)\r\n\r\n btm = tm.btm_process(\"cuv.csv\", chi=True, cat='nt', eval=True)\r\n\r\nutil Submodule\r\n~~~~~~~~~~~~~~\r\n\r\nProvides loading text and text preprocessing functions.\r\n\r\n.. code:: python\r\n\r\n df = util.load_word()\r\n cdf = util.load_word('cuv.csv')\r\n\r\n df.head()\r\n cdf.head()\r\n\r\n rom8 = util.extract2(df, 'Rom 8')\r\n crom8 = util.extract2(cdf, 'Rom 8')\r\n\r\nviz Submodule\r\n~~~~~~~~~~~~~\r\n\r\nWordcloud plotting from the prescribed text.\r\n\r\n.. code:: python\r\n\r\n cdf = util.load_word('cuv.csv')\r\n\r\n viz.chi_wordcloud(cdf)\r\n\r\nContributing\r\n------------\r\n\r\nInterested in contributing? Check out the contributing guidelines.\r\nPlease note that this project is released with a Code of Conduct. By\r\ncontributing to this project, you agree to abide by its terms.\r\n\r\nLicense\r\n-------\r\n\r\n``wordtm`` was created by Johnny Cheng. It is licensed under the terms\r\nof the MIT license.\r\n\r\nCredits\r\n-------\r\n\r\n``wordtm`` was created under the guidance of Jehovah, the Lord.\r\n",
"bugtrack_url": null,
"license": "",
"summary": "Topic Modeling Package",
"version": "0.4.6",
"project_urls": {
"Documentation": "https://drjohnnycheng.github.io/wordtm"
},
"split_keywords": [
"word",
"scripture",
"topic modeling",
"visualization",
"low-code",
"pro-code",
"network analysis",
"bertopic",
"lda",
"nfm"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "ee1c1001144e2cc29c7442485ec49fdd2068b0315d1ba893c493a6d2c3ae7c12",
"md5": "691f04773d4e9d7e4464e6f731994b36",
"sha256": "1a7a06bcc77389ed2bab30a3f3667c30714473908a6b8279a3ce4aef6ca57936"
},
"downloads": -1,
"filename": "wordtm-0.4.6-py3-none-any.whl",
"has_sig": false,
"md5_digest": "691f04773d4e9d7e4464e6f731994b36",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": null,
"size": 25552,
"upload_time": "2024-02-05T05:22:33",
"upload_time_iso_8601": "2024-02-05T05:22:33.254730Z",
"url": "https://files.pythonhosted.org/packages/ee/1c/1001144e2cc29c7442485ec49fdd2068b0315d1ba893c493a6d2c3ae7c12/wordtm-0.4.6-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "6c33f330615a8873af446386d2d7ae7c6707f2272f684ef85b1cb2f4eeb4b565",
"md5": "9237b7140e08257bdba183359c1f0e21",
"sha256": "d716277f648b4e76bf4c85430e4ebc8f87bf0cb30b96cb8b0062737d67d4f747"
},
"downloads": -1,
"filename": "wordtm-0.4.6.tar.gz",
"has_sig": false,
"md5_digest": "9237b7140e08257bdba183359c1f0e21",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 5753859,
"upload_time": "2024-02-05T05:22:38",
"upload_time_iso_8601": "2024-02-05T05:22:38.983406Z",
"url": "https://files.pythonhosted.org/packages/6c/33/f330615a8873af446386d2d7ae7c6707f2272f684ef85b1cb2f4eeb4b565/wordtm-0.4.6.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-02-05 05:22:38",
"github": false,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"lcname": "wordtm"
}