# Workbench Bridges
End User Application Bridges to Workbench/AWS ML Pipelines.
## Installation
```
pip install workbench-bridges
```
## Examples
Application invocation of an Endpoint on AWS.
```
import pandas as pd
# Workbench-Bridges Imports
from workbench_bridges.endpoints.fast_inference import fast_inference
if __name__ == "__main__":
# Data will be passed in from the End-User Application
eval_df = pd.read_csv("test_evaluation_data.csv")
# Run inference on AWS Endpoint
endpoint_name = "test-my-endpoint"
results = fast_inference(endpoint_name, eval_df)
# A Dataframe with Predictions is returned
print(results)
```
Raw data
{
"_id": null,
"home_page": null,
"name": "workbench-bridges",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.9",
"maintainer_email": null,
"keywords": "SageMaker, Machine Learning, AWS, Python, Utilities",
"author": null,
"author_email": "SuperCowPowers LLC <support@supercowpowers.com>",
"download_url": "https://files.pythonhosted.org/packages/a8/66/001a776fbb97501c0fc55abc80e2a8cecc87c9adf14fc5fd57cb1666a9e8/workbench_bridges-0.1.7.tar.gz",
"platform": null,
"description": "# Workbench Bridges\nEnd User Application Bridges to Workbench/AWS ML Pipelines.\n\n## Installation\n```\npip install workbench-bridges\n```\n\n## Examples\nApplication invocation of an Endpoint on AWS.\n\n```\nimport pandas as pd\n\n# Workbench-Bridges Imports\nfrom workbench_bridges.endpoints.fast_inference import fast_inference\n\n\nif __name__ == \"__main__\":\n\n # Data will be passed in from the End-User Application\n eval_df = pd.read_csv(\"test_evaluation_data.csv\")\n\n # Run inference on AWS Endpoint\n endpoint_name = \"test-my-endpoint\"\n results = fast_inference(endpoint_name, eval_df)\n\n # A Dataframe with Predictions is returned\n print(results)\n```\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "Workbench Bridges: End User Application Bridges to Workbench/AWS",
"version": "0.1.7",
"project_urls": {
"Homepage": "https://github.com/SuperCowPowers/workbench-bridges"
},
"split_keywords": [
"sagemaker",
" machine learning",
" aws",
" python",
" utilities"
],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "1f5153c057ce16c9cb789f147c02e2438f951b3449bd427bf55540796236ec8a",
"md5": "d77f4826ca7d960f1a54e74305287763",
"sha256": "713d15890d11b9efdbf2b50379eacafaafa754eba926b4b22822d9e0814d6f53"
},
"downloads": -1,
"filename": "workbench_bridges-0.1.7-py3-none-any.whl",
"has_sig": false,
"md5_digest": "d77f4826ca7d960f1a54e74305287763",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.9",
"size": 28192,
"upload_time": "2025-07-25T14:26:05",
"upload_time_iso_8601": "2025-07-25T14:26:05.465959Z",
"url": "https://files.pythonhosted.org/packages/1f/51/53c057ce16c9cb789f147c02e2438f951b3449bd427bf55540796236ec8a/workbench_bridges-0.1.7-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "a866001a776fbb97501c0fc55abc80e2a8cecc87c9adf14fc5fd57cb1666a9e8",
"md5": "2e10b1d2fcbec68c9999aaa3a0d26a05",
"sha256": "426fefc193aa7585cd9b89dc5c5343c7df73ffae62e07f9bbbdbb0ee1f20c5fc"
},
"downloads": -1,
"filename": "workbench_bridges-0.1.7.tar.gz",
"has_sig": false,
"md5_digest": "2e10b1d2fcbec68c9999aaa3a0d26a05",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.9",
"size": 31436,
"upload_time": "2025-07-25T14:26:06",
"upload_time_iso_8601": "2025-07-25T14:26:06.484622Z",
"url": "https://files.pythonhosted.org/packages/a8/66/001a776fbb97501c0fc55abc80e2a8cecc87c9adf14fc5fd57cb1666a9e8/workbench_bridges-0.1.7.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-07-25 14:26:06",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "SuperCowPowers",
"github_project": "workbench-bridges",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"tox": true,
"lcname": "workbench-bridges"
}