wpodnet-pytorch


Namewpodnet-pytorch JSON
Version 1.0.3 PyPI version JSON
download
home_pageNone
SummaryThe implementation of ECCV 2018 paper "License Plate Detection and Recognition in Unconstrained Scenarios" in PyTorch
upload_time2024-04-10 09:38:47
maintainerPandede
docs_urlNone
authorPandede
requires_python>=3.7
licenseNone
keywords python ai computer-vision deep-learning torch object-detection license-plate-recognition wpod wpod-net
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # WPODNet: Build with Torch
## Introduction
This repository implements the proposed method from **ECCV 2018 paper ["License Plate Detection and Recognition in Unconstrained Scenarios"](https://openaccess.thecvf.com/content_ECCV_2018/papers/Sergio_Silva_License_Plate_Detection_ECCV_2018_paper.pdf)** in Torch.

The model in Keras is built by the essay author, see [sergiomsilva/alpr-unconstrained](https://github.com/sergiomsilva/alpr-unconstrained).


<table>
    <tr>
        <td> Example </td>
        <td> <img src="./docs/sample/original/03009.jpg" width="300px"></td>
        <td> <img src="./docs/sample/original/03016.jpg" width="300px"></td>
        <td> <img src="./docs/sample/original/03025.jpg" width="300px"></td>
    </tr> 
    <tr>
        <td> Annotated </td>
        <td><img src="./docs/sample/annotated/03009.jpg" width="300px"></td>
        <td><img src="./docs/sample/annotated/03016.jpg" width="300px"></td>
        <td><img src="./docs/sample/annotated/03025.jpg" width="300px"></td>
    </tr>
    <tr>
        <td> Warp perspective </td>
        <td><img src="./docs/sample/warped/03009.jpg" width="300px"></td>
        <td><img src="./docs/sample/warped/03016.jpg" width="300px"></td>
        <td><img src="./docs/sample/warped/03025.jpg" width="300px"></td>
    </tr>
    <tr>
        <td> Confidence </td>
        <td> 0.9841 </td>
        <td> 0.9945 </td>
        <td> 0.9979 </td>
    </tr>
</table>

## Quick Run
1. Clone this repository
    ```bash
    git clone https://github.com/Pandede/WPODNet-Pytorch.git
    ```
2. Install [PyTorch](https://pytorch.org) depends on your environment.
3. Install packages in `requirements.txt`
    ```bash
    pip3 install -r requirements.txt
    ```
4. Download the pretrained weight `wpodnet.pth` from [here](https://github.com/Pandede/WPODNet-Pytorch/releases/download/1.0.0/wpodnet.pth)
5. Predict with an image
    ```bash
    python3 predict.py  docs/sample/original/03009.jpg          # The path to the an image
                        # docs/sample/original                  # OR the path to the directory with bulk of images
                        -w weights/wpodnet.pth                  # The path to the weight
                        --save-annotated docs/sample/annotated  # The directory to save the annotated images
                        --save-warped docs/sample/warped        # The directory to save the warped images
    ```

## Future works
- [x] Inference with GPU
- [x] Inference with bulk of images
- [ ] Inference with video
- [ ] Introduce training procedure
- [x] The matrix multiplication seems weird in function `postprocess`, may improve the computation.

## Citation
```bibtex
@inproceedings{silva2018license,
  title={License plate detection and recognition in unconstrained scenarios},
  author={Silva, Sergio Montazzolli and Jung, Cl{\'a}udio Rosito},
  booktitle={Proceedings of the European conference on computer vision (ECCV)},
  pages={580--596},
  year={2018}
}
```

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "wpodnet-pytorch",
    "maintainer": "Pandede",
    "docs_url": null,
    "requires_python": ">=3.7",
    "maintainer_email": null,
    "keywords": "python, ai, computer-vision, deep-learning, torch, object-detection, license-plate-recognition, wpod, wpod-net",
    "author": "Pandede",
    "author_email": null,
    "download_url": "https://files.pythonhosted.org/packages/08/36/32a00c5ea160ae46b7bef6b6b90d31dd09615813f87e7f1ca38b53f170d2/wpodnet-pytorch-1.0.3.tar.gz",
    "platform": null,
    "description": "# WPODNet: Build with Torch\n## Introduction\nThis repository implements the proposed method from **ECCV 2018 paper [\"License Plate Detection and Recognition in Unconstrained Scenarios\"](https://openaccess.thecvf.com/content_ECCV_2018/papers/Sergio_Silva_License_Plate_Detection_ECCV_2018_paper.pdf)** in Torch.\n\nThe model in Keras is built by the essay author, see [sergiomsilva/alpr-unconstrained](https://github.com/sergiomsilva/alpr-unconstrained).\n\n\n<table>\n    <tr>\n        <td> Example </td>\n        <td> <img src=\"./docs/sample/original/03009.jpg\" width=\"300px\"></td>\n        <td> <img src=\"./docs/sample/original/03016.jpg\" width=\"300px\"></td>\n        <td> <img src=\"./docs/sample/original/03025.jpg\" width=\"300px\"></td>\n    </tr> \n    <tr>\n        <td> Annotated </td>\n        <td><img src=\"./docs/sample/annotated/03009.jpg\" width=\"300px\"></td>\n        <td><img src=\"./docs/sample/annotated/03016.jpg\" width=\"300px\"></td>\n        <td><img src=\"./docs/sample/annotated/03025.jpg\" width=\"300px\"></td>\n    </tr>\n    <tr>\n        <td> Warp perspective </td>\n        <td><img src=\"./docs/sample/warped/03009.jpg\" width=\"300px\"></td>\n        <td><img src=\"./docs/sample/warped/03016.jpg\" width=\"300px\"></td>\n        <td><img src=\"./docs/sample/warped/03025.jpg\" width=\"300px\"></td>\n    </tr>\n    <tr>\n        <td> Confidence </td>\n        <td> 0.9841 </td>\n        <td> 0.9945 </td>\n        <td> 0.9979 </td>\n    </tr>\n</table>\n\n## Quick Run\n1. Clone this repository\n    ```bash\n    git clone https://github.com/Pandede/WPODNet-Pytorch.git\n    ```\n2. Install [PyTorch](https://pytorch.org) depends on your environment.\n3. Install packages in `requirements.txt`\n    ```bash\n    pip3 install -r requirements.txt\n    ```\n4. Download the pretrained weight `wpodnet.pth` from [here](https://github.com/Pandede/WPODNet-Pytorch/releases/download/1.0.0/wpodnet.pth)\n5. Predict with an image\n    ```bash\n    python3 predict.py  docs/sample/original/03009.jpg          # The path to the an image\n                        # docs/sample/original                  # OR the path to the directory with bulk of images\n                        -w weights/wpodnet.pth                  # The path to the weight\n                        --save-annotated docs/sample/annotated  # The directory to save the annotated images\n                        --save-warped docs/sample/warped        # The directory to save the warped images\n    ```\n\n## Future works\n- [x] Inference with GPU\n- [x] Inference with bulk of images\n- [ ] Inference with video\n- [ ] Introduce training procedure\n- [x] The matrix multiplication seems weird in function `postprocess`, may improve the computation.\n\n## Citation\n```bibtex\n@inproceedings{silva2018license,\n  title={License plate detection and recognition in unconstrained scenarios},\n  author={Silva, Sergio Montazzolli and Jung, Cl{\\'a}udio Rosito},\n  booktitle={Proceedings of the European conference on computer vision (ECCV)},\n  pages={580--596},\n  year={2018}\n}\n```\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "The implementation of ECCV 2018 paper \"License Plate Detection and Recognition in Unconstrained Scenarios\" in PyTorch",
    "version": "1.0.3",
    "project_urls": {
        "Source": "https://github.com/Pandede/WPODNet-Pytorch"
    },
    "split_keywords": [
        "python",
        " ai",
        " computer-vision",
        " deep-learning",
        " torch",
        " object-detection",
        " license-plate-recognition",
        " wpod",
        " wpod-net"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "8e64155ee2a5252c441bf403c2f8f5566b7bfd33242dd607e99f2704e5ae2fbd",
                "md5": "5307c79eee7d4ee4cd4662befb1930fa",
                "sha256": "47a55bd7e8c65028ef4dd82d222d243fdc48846af596fae85f2e8570fdf2585b"
            },
            "downloads": -1,
            "filename": "wpodnet_pytorch-1.0.3-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "5307c79eee7d4ee4cd4662befb1930fa",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.7",
            "size": 5856,
            "upload_time": "2024-04-10T09:38:46",
            "upload_time_iso_8601": "2024-04-10T09:38:46.157359Z",
            "url": "https://files.pythonhosted.org/packages/8e/64/155ee2a5252c441bf403c2f8f5566b7bfd33242dd607e99f2704e5ae2fbd/wpodnet_pytorch-1.0.3-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "083632a00c5ea160ae46b7bef6b6b90d31dd09615813f87e7f1ca38b53f170d2",
                "md5": "e69d165521f14f8b69b581f4be459e33",
                "sha256": "fcc37376989bd972dee7b8cd0c7a8dd27c9e7314995197085647c1c332c118b0"
            },
            "downloads": -1,
            "filename": "wpodnet-pytorch-1.0.3.tar.gz",
            "has_sig": false,
            "md5_digest": "e69d165521f14f8b69b581f4be459e33",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.7",
            "size": 5796,
            "upload_time": "2024-04-10T09:38:47",
            "upload_time_iso_8601": "2024-04-10T09:38:47.618990Z",
            "url": "https://files.pythonhosted.org/packages/08/36/32a00c5ea160ae46b7bef6b6b90d31dd09615813f87e7f1ca38b53f170d2/wpodnet-pytorch-1.0.3.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-04-10 09:38:47",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "Pandede",
    "github_project": "WPODNet-Pytorch",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "requirements": [],
    "lcname": "wpodnet-pytorch"
}
        
Elapsed time: 0.25475s