# wtrainclient
## 가상환경 설정
```sh
pyenv install 3.8.18
pyenv virtualenv 3.8.18 wtrainclient3.8
pyenv activate wtrainclient3.8
```
---
## mlflow, minio 실행
```sh
cd docker
docker-compose up -d --build
```
---
## 환경 변수 설정
프로젝트를 실행하기 전에 아래의 환경 변수들을 설정해야 합니다:
| 환경변수 | 설명 | 예시 |
| ------------------------- | ------------------------------------------------------------------ | ----------------------------------------- |
| PROFILE | 개발/운영 환경설정, 개발환경에서는 모델을 실제로 업르도하지 않는다 | 운영: "prod" or "production", 개발: 그 외 |
| MLFLOW_S3_ENDPOINT_URL | MLflow가 저장소로 사용하고있는 MinIO 엔드포인트 URL | http://localhost:9000 |
| MLFLOW_TRACKING_URI | MLflow 트래킹 서버의 URI | http://localhost:5001 |
| AWS_ACCESS_KEY_ID | MinIO 서버 접근을 위한 AWS 호환 액세스 키 | minio |
| AWS_SECRET_ACCESS_KEY | MinIO 서버 접근을 위한 AWS 호환 시크릿 액세스 키 | miniostorage |
| RABBIT_ENDPOINT_URL | MinIO 서버에 모델 업로드 후 path 를 발행할 RMQ 엔드포인트 URL | amqp://guest:guest@localhost:5672/ |
| RABBIT_MODEL_UPLOAD_TOPIC | 모델 업로드 path 를 전달할 토픽 | train.model.uploaded |
| TRAIN_ID | train_id (학습 서버에서 넣어주는 값) | 1 |
| MODEL_NAME | model_name (학습 서버에서 넣어주는 값) | my_model |
---
Raw data
{
"_id": null,
"home_page": "https://github.com/WIM-Corporation/w-train-utils-mlflow",
"name": "wtu-mlflow",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.7",
"maintainer_email": null,
"keywords": null,
"author": "hbjs",
"author_email": "hbjs97@naver.com",
"download_url": "https://files.pythonhosted.org/packages/f2/c3/74055fbd341097f502ec9a516b52553fad635c65cb70b1f529abe84436f0/wtu-mlflow-0.1.9.tar.gz",
"platform": null,
"description": "# wtrainclient\n\n## \uac00\uc0c1\ud658\uacbd \uc124\uc815\n\n```sh\npyenv install 3.8.18\npyenv virtualenv 3.8.18 wtrainclient3.8\npyenv activate wtrainclient3.8\n```\n\n---\n\n## mlflow, minio \uc2e4\ud589\n\n```sh\ncd docker\ndocker-compose up -d --build\n```\n\n---\n\n## \ud658\uacbd \ubcc0\uc218 \uc124\uc815\n\n\ud504\ub85c\uc81d\ud2b8\ub97c \uc2e4\ud589\ud558\uae30 \uc804\uc5d0 \uc544\ub798\uc758 \ud658\uacbd \ubcc0\uc218\ub4e4\uc744 \uc124\uc815\ud574\uc57c \ud569\ub2c8\ub2e4:\n\n| \ud658\uacbd\ubcc0\uc218 | \uc124\uba85 | \uc608\uc2dc |\n| ------------------------- | ------------------------------------------------------------------ | ----------------------------------------- |\n| PROFILE | \uac1c\ubc1c/\uc6b4\uc601 \ud658\uacbd\uc124\uc815, \uac1c\ubc1c\ud658\uacbd\uc5d0\uc11c\ub294 \ubaa8\ub378\uc744 \uc2e4\uc81c\ub85c \uc5c5\ub974\ub3c4\ud558\uc9c0 \uc54a\ub294\ub2e4 | \uc6b4\uc601: \"prod\" or \"production\", \uac1c\ubc1c: \uadf8 \uc678 |\n| MLFLOW_S3_ENDPOINT_URL | MLflow\uac00 \uc800\uc7a5\uc18c\ub85c \uc0ac\uc6a9\ud558\uace0\uc788\ub294 MinIO \uc5d4\ub4dc\ud3ec\uc778\ud2b8 URL | http://localhost:9000 |\n| MLFLOW_TRACKING_URI | MLflow \ud2b8\ub798\ud0b9 \uc11c\ubc84\uc758 URI | http://localhost:5001 |\n| AWS_ACCESS_KEY_ID | MinIO \uc11c\ubc84 \uc811\uadfc\uc744 \uc704\ud55c AWS \ud638\ud658 \uc561\uc138\uc2a4 \ud0a4 | minio |\n| AWS_SECRET_ACCESS_KEY | MinIO \uc11c\ubc84 \uc811\uadfc\uc744 \uc704\ud55c AWS \ud638\ud658 \uc2dc\ud06c\ub9bf \uc561\uc138\uc2a4 \ud0a4 | miniostorage |\n| RABBIT_ENDPOINT_URL | MinIO \uc11c\ubc84\uc5d0 \ubaa8\ub378 \uc5c5\ub85c\ub4dc \ud6c4 path \ub97c \ubc1c\ud589\ud560 RMQ \uc5d4\ub4dc\ud3ec\uc778\ud2b8 URL | amqp://guest:guest@localhost:5672/ |\n| RABBIT_MODEL_UPLOAD_TOPIC | \ubaa8\ub378 \uc5c5\ub85c\ub4dc path \ub97c \uc804\ub2ec\ud560 \ud1a0\ud53d | train.model.uploaded |\n| TRAIN_ID | train_id (\ud559\uc2b5 \uc11c\ubc84\uc5d0\uc11c \ub123\uc5b4\uc8fc\ub294 \uac12) | 1 |\n| MODEL_NAME | model_name (\ud559\uc2b5 \uc11c\ubc84\uc5d0\uc11c \ub123\uc5b4\uc8fc\ub294 \uac12) | my_model |\n\n---\n\n\n",
"bugtrack_url": null,
"license": null,
"summary": "W-Train Utils for MLflow",
"version": "0.1.9",
"project_urls": {
"Homepage": "https://github.com/WIM-Corporation/w-train-utils-mlflow"
},
"split_keywords": [],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "64e64af597ee4de868dffbb54f7fad2f31b61b04fe898400f8c87d804953638f",
"md5": "d5e6aa7e16a3f9d7ba8e9925e9788291",
"sha256": "34c2ec076efb837419e2163a00c1c574994855eebee7ee2107ca464e364a4d3c"
},
"downloads": -1,
"filename": "wtu_mlflow-0.1.9-py3-none-any.whl",
"has_sig": false,
"md5_digest": "d5e6aa7e16a3f9d7ba8e9925e9788291",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.7",
"size": 14410,
"upload_time": "2024-12-12T12:10:39",
"upload_time_iso_8601": "2024-12-12T12:10:39.829178Z",
"url": "https://files.pythonhosted.org/packages/64/e6/4af597ee4de868dffbb54f7fad2f31b61b04fe898400f8c87d804953638f/wtu_mlflow-0.1.9-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "f2c374055fbd341097f502ec9a516b52553fad635c65cb70b1f529abe84436f0",
"md5": "01ee49d2893111a0544b000b5769d9f2",
"sha256": "d5be5aa2d199a5b8c197024c1f4e409de139934cab7e53024b5c6eac6b967a85"
},
"downloads": -1,
"filename": "wtu-mlflow-0.1.9.tar.gz",
"has_sig": false,
"md5_digest": "01ee49d2893111a0544b000b5769d9f2",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.7",
"size": 11195,
"upload_time": "2024-12-12T12:10:41",
"upload_time_iso_8601": "2024-12-12T12:10:41.059257Z",
"url": "https://files.pythonhosted.org/packages/f2/c3/74055fbd341097f502ec9a516b52553fad635c65cb70b1f529abe84436f0/wtu-mlflow-0.1.9.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-12-12 12:10:41",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "WIM-Corporation",
"github_project": "w-train-utils-mlflow",
"github_not_found": true,
"lcname": "wtu-mlflow"
}