wtu-mlflow


Namewtu-mlflow JSON
Version 0.1.9 PyPI version JSON
download
home_pagehttps://github.com/WIM-Corporation/w-train-utils-mlflow
SummaryW-Train Utils for MLflow
upload_time2024-12-12 12:10:41
maintainerNone
docs_urlNone
authorhbjs
requires_python>=3.7
licenseNone
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # wtrainclient

## 가상환경 설정

```sh
pyenv install 3.8.18
pyenv virtualenv 3.8.18 wtrainclient3.8
pyenv activate wtrainclient3.8
```

---

## mlflow, minio 실행

```sh
cd docker
docker-compose up -d --build
```

---

## 환경 변수 설정

프로젝트를 실행하기 전에 아래의 환경 변수들을 설정해야 합니다:

| 환경변수                  | 설명                                                               | 예시                                      |
| ------------------------- | ------------------------------------------------------------------ | ----------------------------------------- |
| PROFILE                   | 개발/운영 환경설정, 개발환경에서는 모델을 실제로 업르도하지 않는다 | 운영: "prod" or "production", 개발: 그 외 |
| MLFLOW_S3_ENDPOINT_URL    | MLflow가 저장소로 사용하고있는 MinIO 엔드포인트 URL                | http://localhost:9000                     |
| MLFLOW_TRACKING_URI       | MLflow 트래킹 서버의 URI                                           | http://localhost:5001                     |
| AWS_ACCESS_KEY_ID         | MinIO 서버 접근을 위한 AWS 호환 액세스 키                          | minio                                     |
| AWS_SECRET_ACCESS_KEY     | MinIO 서버 접근을 위한 AWS 호환 시크릿 액세스 키                   | miniostorage                              |
| RABBIT_ENDPOINT_URL       | MinIO 서버에 모델 업로드 후 path 를 발행할 RMQ 엔드포인트 URL      | amqp://guest:guest@localhost:5672/        |
| RABBIT_MODEL_UPLOAD_TOPIC | 모델 업로드 path 를 전달할 토픽                                    | train.model.uploaded                      |
| TRAIN_ID                  | train_id (학습 서버에서 넣어주는 값)                               | 1                                         |
| MODEL_NAME                | model_name (학습 서버에서 넣어주는 값)                             | my_model                                  |

---



            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/WIM-Corporation/w-train-utils-mlflow",
    "name": "wtu-mlflow",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.7",
    "maintainer_email": null,
    "keywords": null,
    "author": "hbjs",
    "author_email": "hbjs97@naver.com",
    "download_url": "https://files.pythonhosted.org/packages/f2/c3/74055fbd341097f502ec9a516b52553fad635c65cb70b1f529abe84436f0/wtu-mlflow-0.1.9.tar.gz",
    "platform": null,
    "description": "# wtrainclient\n\n## \uac00\uc0c1\ud658\uacbd \uc124\uc815\n\n```sh\npyenv install 3.8.18\npyenv virtualenv 3.8.18 wtrainclient3.8\npyenv activate wtrainclient3.8\n```\n\n---\n\n## mlflow, minio \uc2e4\ud589\n\n```sh\ncd docker\ndocker-compose up -d --build\n```\n\n---\n\n## \ud658\uacbd \ubcc0\uc218 \uc124\uc815\n\n\ud504\ub85c\uc81d\ud2b8\ub97c \uc2e4\ud589\ud558\uae30 \uc804\uc5d0 \uc544\ub798\uc758 \ud658\uacbd \ubcc0\uc218\ub4e4\uc744 \uc124\uc815\ud574\uc57c \ud569\ub2c8\ub2e4:\n\n| \ud658\uacbd\ubcc0\uc218                  | \uc124\uba85                                                               | \uc608\uc2dc                                      |\n| ------------------------- | ------------------------------------------------------------------ | ----------------------------------------- |\n| PROFILE                   | \uac1c\ubc1c/\uc6b4\uc601 \ud658\uacbd\uc124\uc815, \uac1c\ubc1c\ud658\uacbd\uc5d0\uc11c\ub294 \ubaa8\ub378\uc744 \uc2e4\uc81c\ub85c \uc5c5\ub974\ub3c4\ud558\uc9c0 \uc54a\ub294\ub2e4 | \uc6b4\uc601: \"prod\" or \"production\", \uac1c\ubc1c: \uadf8 \uc678 |\n| MLFLOW_S3_ENDPOINT_URL    | MLflow\uac00 \uc800\uc7a5\uc18c\ub85c \uc0ac\uc6a9\ud558\uace0\uc788\ub294 MinIO \uc5d4\ub4dc\ud3ec\uc778\ud2b8 URL                | http://localhost:9000                     |\n| MLFLOW_TRACKING_URI       | MLflow \ud2b8\ub798\ud0b9 \uc11c\ubc84\uc758 URI                                           | http://localhost:5001                     |\n| AWS_ACCESS_KEY_ID         | MinIO \uc11c\ubc84 \uc811\uadfc\uc744 \uc704\ud55c AWS \ud638\ud658 \uc561\uc138\uc2a4 \ud0a4                          | minio                                     |\n| AWS_SECRET_ACCESS_KEY     | MinIO \uc11c\ubc84 \uc811\uadfc\uc744 \uc704\ud55c AWS \ud638\ud658 \uc2dc\ud06c\ub9bf \uc561\uc138\uc2a4 \ud0a4                   | miniostorage                              |\n| RABBIT_ENDPOINT_URL       | MinIO \uc11c\ubc84\uc5d0 \ubaa8\ub378 \uc5c5\ub85c\ub4dc \ud6c4 path \ub97c \ubc1c\ud589\ud560 RMQ \uc5d4\ub4dc\ud3ec\uc778\ud2b8 URL      | amqp://guest:guest@localhost:5672/        |\n| RABBIT_MODEL_UPLOAD_TOPIC | \ubaa8\ub378 \uc5c5\ub85c\ub4dc path \ub97c \uc804\ub2ec\ud560 \ud1a0\ud53d                                    | train.model.uploaded                      |\n| TRAIN_ID                  | train_id (\ud559\uc2b5 \uc11c\ubc84\uc5d0\uc11c \ub123\uc5b4\uc8fc\ub294 \uac12)                               | 1                                         |\n| MODEL_NAME                | model_name (\ud559\uc2b5 \uc11c\ubc84\uc5d0\uc11c \ub123\uc5b4\uc8fc\ub294 \uac12)                             | my_model                                  |\n\n---\n\n\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "W-Train Utils for MLflow",
    "version": "0.1.9",
    "project_urls": {
        "Homepage": "https://github.com/WIM-Corporation/w-train-utils-mlflow"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "64e64af597ee4de868dffbb54f7fad2f31b61b04fe898400f8c87d804953638f",
                "md5": "d5e6aa7e16a3f9d7ba8e9925e9788291",
                "sha256": "34c2ec076efb837419e2163a00c1c574994855eebee7ee2107ca464e364a4d3c"
            },
            "downloads": -1,
            "filename": "wtu_mlflow-0.1.9-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "d5e6aa7e16a3f9d7ba8e9925e9788291",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.7",
            "size": 14410,
            "upload_time": "2024-12-12T12:10:39",
            "upload_time_iso_8601": "2024-12-12T12:10:39.829178Z",
            "url": "https://files.pythonhosted.org/packages/64/e6/4af597ee4de868dffbb54f7fad2f31b61b04fe898400f8c87d804953638f/wtu_mlflow-0.1.9-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "f2c374055fbd341097f502ec9a516b52553fad635c65cb70b1f529abe84436f0",
                "md5": "01ee49d2893111a0544b000b5769d9f2",
                "sha256": "d5be5aa2d199a5b8c197024c1f4e409de139934cab7e53024b5c6eac6b967a85"
            },
            "downloads": -1,
            "filename": "wtu-mlflow-0.1.9.tar.gz",
            "has_sig": false,
            "md5_digest": "01ee49d2893111a0544b000b5769d9f2",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.7",
            "size": 11195,
            "upload_time": "2024-12-12T12:10:41",
            "upload_time_iso_8601": "2024-12-12T12:10:41.059257Z",
            "url": "https://files.pythonhosted.org/packages/f2/c3/74055fbd341097f502ec9a516b52553fad635c65cb70b1f529abe84436f0/wtu-mlflow-0.1.9.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-12-12 12:10:41",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "WIM-Corporation",
    "github_project": "w-train-utils-mlflow",
    "github_not_found": true,
    "lcname": "wtu-mlflow"
}
        
Elapsed time: 0.36750s