wwp


Namewwp JSON
Version 1.1.1 PyPI version JSON
download
home_pagehttps://github.com/Langton49/workingWithPrimes
SummaryPython module for working with prime numbers
upload_time2023-10-20 17:00:42
maintainer
docs_urlNone
authorMunashe
requires_python>=3.10
licenseMIT
keywords prime numbers mathematics math
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Working With Primes

This Python module provides a collection of functions for visualizing and performing operations with prime numbers. It is a simple tool for mathematical analysis and educational purposes.

## Usage

To use this module, import it in your Python script:

to import all functions

```
from wwp import *
```

or to import specific functions,

```
from wwp import _function_name_
```

Then you can use the functions provided in the module, For example:<br>


Getting the first 5 known prime numbers:

```
from wwp import firstNPrimes

firstFivePrimes = firstNPrimes(5)

print(firstTwelvePrimes)

#Output: [2, 3, 5, 7, 11] 
```

## Functions

### firstNPrimes(n): 
Returns an array containing the first 'n' prime numbers along the number line.<br><br>
**Arguments**:<br>
n (int): The number of prime numbers to generate.<br><br>
**Returns**:<br>
list: A list of the first 'n' prime numbers. <br>
None: If 'n' is equal to 0.

### isPrime(n):
Returns True if 'n' is prime and False if it is not.<br><br>
**Arguments**:<br>
n (int): The number to check for primality.<br><br>
**Returns**:<br>
Boolean: True if 'n' is prime and False if it is not.<br>
None: If 'n' is equal to 0.

### differences(n):
Returns an array containing the differences between successive prime numbers up to the 'n'-th prime.<br><br>
**Arguments**:<br>
n (int): The number of prime numbers to consider for difference calculation.<br><br>
**Returns**:<br>
list: A list of the differences between successive prime numbers.<br>
None: If 'n' is equal to 0.

### sumOfPrimes(n):
Calculates the sum of the first 'n' prime numbers.<br><br>
**Arguments**:<br>
n (int): The first 'n' prime numbers to add up.<br><br>
**Returns**:<br>
int: The sum of the first n prime numbers.<br>
None: If 'n' is equal to 0.

### theNthPrime(n):
Returns the 'n'-th prime number.<br><br>
**Arguments**:<br>
n (int): The position of the prime number.<br><br>
**Returns**:<br>
int: The 'n'-th prime number.<br>
None: If 'n' is equal to 0.

### sumOfDifferences(n):
Calculates the sum of differences between the first 'n' prime numbers.<br><br>
**Arguments**:<br>
n (int): The first 'n' prime numbers to consider.<br><br>
**Returns**:<br>
int: The sum of the differences between the first 'n' prime numbers.<br>
None: If 'n' is equal to 0.

### primeCounting(n):
Returns the number of primes less than 'n'.<br><br>
**Arguments**:<br>
n (int): The positive integer for which you want to count the prime numbers less than it.<br><br>
**Returns**:<br>
int: The number of prime numbers less than 'n'.<br>
None: If 'n' is equal to 0.

### lcm(n):
Calculates the lowest common multiple of the first 'n' primes.<br><br>
**Arguments**:<br>
n (int): The first 'n' prime numbers to consider.<br><br>
**Returns**:<br>
int: The lowest common multiple of the first 'n' prime numbers<br>
None: If 'n' is equal to 0.

### primeSlice(start, stop):
Returns an array of prime numbers between 'start' and 'stop' (inclusive).<br><br>
**Arguments**:<br>
start (int): The starting integer for the range.<br>
stop (int): The ending integer for the range.<br><br>
**Returns**:<br>
list: A list of prime numbers within the inclusive range from 'start' to 'stop'.

### primeDifferenceSlice(start, stop):
Returns an array of the differences between successive prime numbers between 'start' and 'stop' (inclusive).<br><br>
**Arguments**:<br>
start (int): The starting integer for the range.<br>
stop (int): The ending integer for the range.<br><br>
**Returns**:<br>
list: A list of the differences between the prime numbers within the inclusive range from 'start' to 'stop'.

### modifyValues(array, operation, operand):
Modifies an array using the specified 'operation' and 'operand' values.<br><br>
**Arguments**:<br>
array (arr): An array of integer values.<br>
operation (str): The operation to perform on the prime numbers within the range. Valid values are "multiply" or "*", "divide" or "/", "subtract" or "-", "add" or "+", and "exponent" or "^".<br>
operand (int, float or expression): The value to use as the operand for the specified operation.<br><br>
**Returns**:<br>
list: A list of integers after applying the specified 'operation' and 'operand'.

### randomPrimeSlice(start, stop, length):
Generates a random selection of prime numbers within the inclusive range from 'start' to 'stop'.<br><br>
**Arguments**:<br>
start (int): The starting integer for the range.<br>
stop (int): The ending integer for the range.<br>
length (int): The number of prime numbers to include in the random selection.<br><br>
**Returns**:<br>
list: A list of prime numbers randomly selected from within the inclusive range between 'start' and 'stop'.<br>
None: 'length' is equal to 0.

### randomDifferencesSlice(start, stop, length): 
Generates a random selection of differences between successive prime numbers within the inclusive range from 'start' to 'stop'.<br><br>
**Arguments**:<br>
start (int): The starting integer for the range.<br>
stop (int): The ending integer for the range.<br>
length (int): The number of differences to include in the random range.<br><br>
**Returns**:<br>
list: A list of the differences between prime numbers randomly selected from within the inclusive range between 'start' and 'stop'.<br>
None: 'length' is equal to 0.  

### graphDifferences(n):
Graphs the differences between the first 'n' successive prime numbers.<br><br>
**Arguments**:<br>
n (int): The number of successive prime numbers to consider for generating the graph.<br><br>
**Returns**:<br>
This function doesn't return any value; it generates and displays a graph.<br>
None: if 'n' is equal to 0.

### graphPrimes(stop, operation, operand, start):
Plots and displays a graph comparing a set of regular and modified prime numbers.<br><br>
**Arguments**:<br>
stop (int): The ending integer for the range of primes.<br>
operation (str, optional): The mathematical operation to apply to the prime numbers. Valid values are "multiply" or "*", "divide" or "/", "subtract" or "-", "add" or "+", and "exponent" or "^". Defaults to addition ("+").<br>
operand (int, float, or expression, optional): The value to use as the operand for the specified operation. Defaults to 0.<br>
start (int, optional): The starting integer for the range. Defaults to 1.<br><br>
**Returns**:<br>
This function doesn't return any value; it generates and displays a graph.

### sacksSpiral(n, coordinateRange, dotSize):
Draws a Sacks Spiral representation of the first 'n' prime numbers.<br><br>
**Arguments**:<br>
n (int): The first 'n' prime numbers to consider for drawing the Sacks Spiral.<br>
coordinateRange (int, optional): The coordinate system's range for both axis. Defaults to 100.<br>
dotSize (int, optional): The size of dots representing the prime numbers. Defaults to 5.<br><br>
**Returns**:<br>
This function doesn't return any value; it generates and displays a drawing.

### differenceSpiral(n, coordinateRange, dotSize):
Draws a spiral using the same rules of the Sacks Spiral using non-repeating differences
between the primes instead of the primes themselves. Uses turtle graphics library.<br><br>
**Arguments**:<br>
n (int): The limit of differences to consider for drawing the spiral.<br>
coordinateRange (int, optional): The coordinate system's range for both axis. Defaults to 15.<br>
dotSize (int, optional): The size of dots representing the differences. Defaults to 10.<br><br>
**Returns**:<br>
 This function doesn't return any value; it generates and displays a graph.

## License

This project is licensed under the MIT License - see the [LICENSE](https://mit-license.org/) for more details.


            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/Langton49/workingWithPrimes",
    "name": "wwp",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.10",
    "maintainer_email": "",
    "keywords": "Prime,Numbers,Mathematics,Math",
    "author": "Munashe",
    "author_email": "munashemukweya2022@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/72/ca/fdafd0763076a5dce966629234eb4913dcfa1ef33a0be78bc36e02fd568c/wwp-1.1.1.tar.gz",
    "platform": null,
    "description": "# Working With Primes\r\n\r\nThis Python module provides a collection of functions for visualizing and performing operations with prime numbers. It is a simple tool for mathematical analysis and educational purposes.\r\n\r\n## Usage\r\n\r\nTo use this module, import it in your Python script:\r\n\r\nto import all functions\r\n\r\n```\r\nfrom wwp import *\r\n```\r\n\r\nor to import specific functions,\r\n\r\n```\r\nfrom wwp import _function_name_\r\n```\r\n\r\nThen you can use the functions provided in the module, For example:<br>\r\n\r\n\r\nGetting the first 5 known prime numbers:\r\n\r\n```\r\nfrom wwp import firstNPrimes\r\n\r\nfirstFivePrimes = firstNPrimes(5)\r\n\r\nprint(firstTwelvePrimes)\r\n\r\n#Output: [2, 3, 5, 7, 11] \r\n```\r\n\r\n## Functions\r\n\r\n### firstNPrimes(n): \r\nReturns an array containing the first 'n' prime numbers along the number line.<br><br>\r\n**Arguments**:<br>\r\nn (int): The number of prime numbers to generate.<br><br>\r\n**Returns**:<br>\r\nlist: A list of the first 'n' prime numbers. <br>\r\nNone: If 'n' is equal to 0.\r\n\r\n### isPrime(n):\r\nReturns True if 'n' is prime and False if it is not.<br><br>\r\n**Arguments**:<br>\r\nn (int): The number to check for primality.<br><br>\r\n**Returns**:<br>\r\nBoolean: True if 'n' is prime and False if it is not.<br>\r\nNone: If 'n' is equal to 0.\r\n\r\n### differences(n):\r\nReturns an array containing the differences between successive prime numbers up to the 'n'-th prime.<br><br>\r\n**Arguments**:<br>\r\nn (int): The number of prime numbers to consider for difference calculation.<br><br>\r\n**Returns**:<br>\r\nlist: A list of the differences between successive prime numbers.<br>\r\nNone: If 'n' is equal to 0.\r\n\r\n### sumOfPrimes(n):\r\nCalculates the sum of the first 'n' prime numbers.<br><br>\r\n**Arguments**:<br>\r\nn (int): The first 'n' prime numbers to add up.<br><br>\r\n**Returns**:<br>\r\nint: The sum of the first n prime numbers.<br>\r\nNone: If 'n' is equal to 0.\r\n\r\n### theNthPrime(n):\r\nReturns the 'n'-th prime number.<br><br>\r\n**Arguments**:<br>\r\nn (int): The position of the prime number.<br><br>\r\n**Returns**:<br>\r\nint: The 'n'-th prime number.<br>\r\nNone: If 'n' is equal to 0.\r\n\r\n### sumOfDifferences(n):\r\nCalculates the sum of differences between the first 'n' prime numbers.<br><br>\r\n**Arguments**:<br>\r\nn (int): The first 'n' prime numbers to consider.<br><br>\r\n**Returns**:<br>\r\nint: The sum of the differences between the first 'n' prime numbers.<br>\r\nNone: If 'n' is equal to 0.\r\n\r\n### primeCounting(n):\r\nReturns the number of primes less than 'n'.<br><br>\r\n**Arguments**:<br>\r\nn (int): The positive integer for which you want to count the prime numbers less than it.<br><br>\r\n**Returns**:<br>\r\nint: The number of prime numbers less than 'n'.<br>\r\nNone: If 'n' is equal to 0.\r\n\r\n### lcm(n):\r\nCalculates the lowest common multiple of the first 'n' primes.<br><br>\r\n**Arguments**:<br>\r\nn (int): The first 'n' prime numbers to consider.<br><br>\r\n**Returns**:<br>\r\nint: The lowest common multiple of the first 'n' prime numbers<br>\r\nNone: If 'n' is equal to 0.\r\n\r\n### primeSlice(start, stop):\r\nReturns an array of prime numbers between 'start' and 'stop' (inclusive).<br><br>\r\n**Arguments**:<br>\r\nstart (int): The starting integer for the range.<br>\r\nstop (int): The ending integer for the range.<br><br>\r\n**Returns**:<br>\r\nlist: A list of prime numbers within the inclusive range from 'start' to 'stop'.\r\n\r\n### primeDifferenceSlice(start, stop):\r\nReturns an array of the differences between successive prime numbers between 'start' and 'stop' (inclusive).<br><br>\r\n**Arguments**:<br>\r\nstart (int): The starting integer for the range.<br>\r\nstop (int): The ending integer for the range.<br><br>\r\n**Returns**:<br>\r\nlist: A list of the differences between the prime numbers within the inclusive range from 'start' to 'stop'.\r\n\r\n### modifyValues(array, operation, operand):\r\nModifies an array using the specified 'operation' and 'operand' values.<br><br>\r\n**Arguments**:<br>\r\narray (arr): An array of integer values.<br>\r\noperation (str): The operation to perform on the prime numbers within the range. Valid values are \"multiply\" or \"*\", \"divide\" or \"/\", \"subtract\" or \"-\", \"add\" or \"+\", and \"exponent\" or \"^\".<br>\r\noperand (int, float or expression): The value to use as the operand for the specified operation.<br><br>\r\n**Returns**:<br>\r\nlist: A list of integers after applying the specified 'operation' and 'operand'.\r\n\r\n### randomPrimeSlice(start, stop, length):\r\nGenerates a random selection of prime numbers within the inclusive range from 'start' to 'stop'.<br><br>\r\n**Arguments**:<br>\r\nstart (int): The starting integer for the range.<br>\r\nstop (int): The ending integer for the range.<br>\r\nlength (int): The number of prime numbers to include in the random selection.<br><br>\r\n**Returns**:<br>\r\nlist: A list of prime numbers randomly selected from within the inclusive range between 'start' and 'stop'.<br>\r\nNone: 'length' is equal to 0.\r\n\r\n### randomDifferencesSlice(start, stop, length): \r\nGenerates a random selection of differences between successive prime numbers within the inclusive range from 'start' to 'stop'.<br><br>\r\n**Arguments**:<br>\r\nstart (int): The starting integer for the range.<br>\r\nstop (int): The ending integer for the range.<br>\r\nlength (int): The number of differences to include in the random range.<br><br>\r\n**Returns**:<br>\r\nlist: A list of the differences between prime numbers randomly selected from within the inclusive range between 'start' and 'stop'.<br>\r\nNone: 'length' is equal to 0.  \r\n\r\n### graphDifferences(n):\r\nGraphs the differences between the first 'n' successive prime numbers.<br><br>\r\n**Arguments**:<br>\r\nn (int): The number of successive prime numbers to consider for generating the graph.<br><br>\r\n**Returns**:<br>\r\nThis function doesn't return any value; it generates and displays a graph.<br>\r\nNone: if 'n' is equal to 0.\r\n\r\n### graphPrimes(stop, operation, operand, start):\r\nPlots and displays a graph comparing a set of regular and modified prime numbers.<br><br>\r\n**Arguments**:<br>\r\nstop (int): The ending integer for the range of primes.<br>\r\noperation (str, optional): The mathematical operation to apply to the prime numbers. Valid values are \"multiply\" or \"*\", \"divide\" or \"/\", \"subtract\" or \"-\", \"add\" or \"+\", and \"exponent\" or \"^\". Defaults to addition (\"+\").<br>\r\noperand (int, float, or expression, optional): The value to use as the operand for the specified operation. Defaults to 0.<br>\r\nstart (int, optional): The starting integer for the range. Defaults to 1.<br><br>\r\n**Returns**:<br>\r\nThis function doesn't return any value; it generates and displays a graph.\r\n\r\n### sacksSpiral(n, coordinateRange, dotSize):\r\nDraws a Sacks Spiral representation of the first 'n' prime numbers.<br><br>\r\n**Arguments**:<br>\r\nn (int): The first 'n' prime numbers to consider for drawing the Sacks Spiral.<br>\r\ncoordinateRange (int, optional): The coordinate system's range for both axis. Defaults to 100.<br>\r\ndotSize (int, optional): The size of dots representing the prime numbers. Defaults to 5.<br><br>\r\n**Returns**:<br>\r\nThis function doesn't return any value; it generates and displays a drawing.\r\n\r\n### differenceSpiral(n, coordinateRange, dotSize):\r\nDraws a spiral using the same rules of the Sacks Spiral using non-repeating differences\r\nbetween the primes instead of the primes themselves. Uses turtle graphics library.<br><br>\r\n**Arguments**:<br>\r\nn (int): The limit of differences to consider for drawing the spiral.<br>\r\ncoordinateRange (int, optional): The coordinate system's range for both axis. Defaults to 15.<br>\r\ndotSize (int, optional): The size of dots representing the differences. Defaults to 10.<br><br>\r\n**Returns**:<br>\r\n This function doesn't return any value; it generates and displays a graph.\r\n\r\n## License\r\n\r\nThis project is licensed under the MIT License - see the [LICENSE](https://mit-license.org/) for more details.\r\n\r\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Python module for working with prime numbers",
    "version": "1.1.1",
    "project_urls": {
        "Homepage": "https://github.com/Langton49/workingWithPrimes"
    },
    "split_keywords": [
        "prime",
        "numbers",
        "mathematics",
        "math"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "f4858ded83548ec6420be48b251a3750bbc6509fda114e0bef0a5c4baf8cae7d",
                "md5": "598ea985f03d8050f276be2aa2bad0e6",
                "sha256": "7339acacc64067e88d1f8c57cc71ccb2b8bf884d5e8a5c23ccaf3aacadad409c"
            },
            "downloads": -1,
            "filename": "wwp-1.1.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "598ea985f03d8050f276be2aa2bad0e6",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.10",
            "size": 7336,
            "upload_time": "2023-10-20T17:00:41",
            "upload_time_iso_8601": "2023-10-20T17:00:41.550396Z",
            "url": "https://files.pythonhosted.org/packages/f4/85/8ded83548ec6420be48b251a3750bbc6509fda114e0bef0a5c4baf8cae7d/wwp-1.1.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "72cafdafd0763076a5dce966629234eb4913dcfa1ef33a0be78bc36e02fd568c",
                "md5": "bec722174d3817983262810fd93eeb41",
                "sha256": "bad937b6d341bce974f67364ed01f8edc51a1691e6fcb906c65bbc8e49d4e6e2"
            },
            "downloads": -1,
            "filename": "wwp-1.1.1.tar.gz",
            "has_sig": false,
            "md5_digest": "bec722174d3817983262810fd93eeb41",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.10",
            "size": 7221,
            "upload_time": "2023-10-20T17:00:42",
            "upload_time_iso_8601": "2023-10-20T17:00:42.889931Z",
            "url": "https://files.pythonhosted.org/packages/72/ca/fdafd0763076a5dce966629234eb4913dcfa1ef33a0be78bc36e02fd568c/wwp-1.1.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-10-20 17:00:42",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "Langton49",
    "github_project": "workingWithPrimes",
    "github_not_found": true,
    "lcname": "wwp"
}
        
Elapsed time: 3.24686s