| Name | wxee JSON |
| Version |
0.5.0
JSON |
| download |
| home_page | None |
| Summary | Earth Engine to xarray interface |
| upload_time | 2025-08-23 02:31:43 |
| maintainer | None |
| docs_url | None |
| author | None |
| requires_python | >=3.8 |
| license | None |
| keywords |
earth-engine
time-series
xarray
|
| VCS |
 |
| bugtrack_url |
|
| requirements |
No requirements were recorded.
|
| Travis-CI |
No Travis.
|
| coveralls test coverage |
No coveralls.
|
.. image:: https://raw.githubusercontent.com/aazuspan/wxee/main/docs/_static/wxee.png
:alt: wxee .-- -..-
:width: 200
:target: https://github.com/aazuspan/wxee
|
.. image:: https://img.shields.io/badge/Earth%20Engine%20API-Python-green
:alt: Earth Engine Python
:target: https://developers.google.com/earth-engine/tutorials/community/intro-to-python-api
.. image:: https://img.shields.io/pypi/v/wxee
:alt: PyPI
:target: https://pypi.org/project/wxee/
.. image:: https://img.shields.io/conda/vn/conda-forge/wxee.svg
:alt: conda-forge
:target: https://anaconda.org/conda-forge/wxee
.. image:: https://colab.research.google.com/assets/colab-badge.svg
:alt: Open in Colab
:target: https://colab.research.google.com/github/aazuspan/wxee/blob/main/docs/examples/image_collection_to_xarray.ipynb
.. image:: https://readthedocs.org/projects/wxee/badge/?version=latest&style=flat
:alt: Read the Docs
:target: https://wxee.readthedocs.io/en/latest/?badge=latest
.. image:: https://github.com/aazuspan/wxee/actions/workflows/ci.yml/badge.svg
:alt: Build status
:target: https://github.com/aazuspan/wxee
------------
.. image:: https://raw.githubusercontent.com/aazuspan/wxee/main/docs/_static/demo_001.gif
:alt: Demo downloading weather data to xarray using wxee.
What is wxee?
-------------
`wxee <https://github.com/aazuspan/wxee>`_ was built to make processing gridded, mesoscale time series data quick
and easy by integrating the data catalog and processing power of `Google Earth Engine <https://earthengine.google.com/>`_ with the
flexibility of `xarray <https://github.com/pydata/xarray>`_, with no complicated setup required. To accomplish this, wxee implements
convenient methods for data processing, aggregation, downloading, and ingestion.
`wxee <https://github.com/aazuspan/wxee>`__ can be found in the `Earth Engine Developer Resources <https://developers.google.com/earth-engine/tutorials/community/developer-resources#python>`_!
Features
--------
* Time series image collections to `xarray <https://wxee.readthedocs.io/en/latest/examples/image_collection_to_xarray.html>`__ or `GeoTIFF <https://wxee.readthedocs.io/en/latest/examples/downloading_images_and_collections.html>`_ in one line of code
* `Climatological anomalies <https://wxee.readthedocs.io/en/latest/examples/climatology_anomaly.html>`_ and temporal `aggregation <https://wxee.readthedocs.io/en/latest/examples/temporal_aggregation.html>`_, `interpolation <https://wxee.readthedocs.io/en/latest/examples/temporal_interpolation.html>`_, `smoothing <https://wxee.readthedocs.io/en/latest/generated/wxee.time_series.TimeSeries.rolling_time.html>`_, and `gap-filling <https://wxee.readthedocs.io/en/latest/generated/wxee.time_series.TimeSeries.fill_gaps.html>`_ in Earth Engine
* `Color composite plots <https://wxee.readthedocs.io/en/latest/examples/color_composites.html>`_ from **xarray** datasets
* Parallel processing for fast downloads
To see some of the capabilities of wxee and try it yourself, check out the interactive notebooks `here <https://wxee.readthedocs.io/en/latest/examples.html>`__!
Install
------------
Pip
~~~
.. code-block:: bash
pip install wxee
Conda
~~~~~
.. code-block:: bash
conda install -c conda-forge wxee
Quickstart
----------
Setup
~~~~~
Once you have access to Google Earth Engine, just import and initialize :code:`ee` and :code:`wxee`.
.. code-block:: python
import ee
import wxee
wxee.Initialize()
Download Images
~~~~~~~~~~~~~~~
Download and conversion methods are extended to :code:`ee.Image` and :code:`ee.ImageCollection` using the
:code:`wx` accessor. Just :code:`import wxee` and use the :code:`wx` accessor.
xarray
^^^^^^
.. code-block:: python
ee.ImageCollection("IDAHO_EPSCOR/GRIDMET").wx.to_xarray()
GeoTIFF
^^^^^^^
.. code-block:: python
ee.ImageCollection("IDAHO_EPSCOR/GRIDMET").wx.to_tif()
Create a Time Series
~~~~~~~~~~~~~~~~~~~~
Additional methods for processing image collections in the time dimension are available through the :code:`TimeSeries` subclass.
A :code:`TimeSeries` can be created from an existing :code:`ee.ImageCollection`...
.. code-block:: python
col = ee.ImageCollection("IDAHO_EPSCOR/GRIDMET")
ts = col.wx.to_time_series()
Or instantiated directly just like you would an :code:`ee.ImageCollection`!
.. code-block:: python
ts = wxee.TimeSeries("IDAHO_EPSCOR/GRIDMET")
Aggregate Daily Data
~~~~~~~~~~~~~~~~~~~~
Many weather datasets are in daily or hourly resolution. These can be aggregated to coarser resolutions using the :code:`aggregate_time`
method of the :code:`TimeSeries` class.
.. code-block:: python
ts = wxee.TimeSeries("IDAHO_EPSCOR/GRIDMET")
monthly_max = ts.aggregate_time(frequency="month", reducer=ee.Reducer.max())
Calculate Climatological Means
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Long-term climatological means can be calculated using the :code:`climatology_mean` method of the :code:`TimeSeries` class.
.. code-block:: python
ts = wxee.TimeSeries("IDAHO_EPSCOR/GRIDMET")
mean_clim = ts.climatology_mean(frequency="month")
Contribute
----------
Bugs or feature requests are always appreciated! They can be submitted `here <https://github.com/aazuspan/wxee/issues>`__.
Code contributions are also welcome! Please open an `issue <https://github.com/aazuspan/wxee/issues>`__ to discuss implementation,
then follow the steps below. Developer setup instructions can be found `in the docs <https://wxee.readthedocs.io/en/latest/contributing.html>`__.
Raw data
{
"_id": null,
"home_page": null,
"name": "wxee",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.8",
"maintainer_email": null,
"keywords": "earth-engine, time-series, xarray",
"author": null,
"author_email": "Aaron Zuspan <aazuspan@gmail.com>",
"download_url": "https://files.pythonhosted.org/packages/ce/b2/50f6c923dddd1617a6e5329a74d61cf4408f6e435537f50b7e4b1e1a83f7/wxee-0.5.0.tar.gz",
"platform": null,
"description": ".. image:: https://raw.githubusercontent.com/aazuspan/wxee/main/docs/_static/wxee.png\n :alt: wxee .-- -..-\n :width: 200\n :target: https://github.com/aazuspan/wxee\n\n|\n\n.. image:: https://img.shields.io/badge/Earth%20Engine%20API-Python-green\n :alt: Earth Engine Python\n :target: https://developers.google.com/earth-engine/tutorials/community/intro-to-python-api\n.. image:: https://img.shields.io/pypi/v/wxee\n :alt: PyPI\n :target: https://pypi.org/project/wxee/\n.. image:: https://img.shields.io/conda/vn/conda-forge/wxee.svg\n :alt: conda-forge\n :target: https://anaconda.org/conda-forge/wxee\n.. image:: https://colab.research.google.com/assets/colab-badge.svg\n :alt: Open in Colab\n :target: https://colab.research.google.com/github/aazuspan/wxee/blob/main/docs/examples/image_collection_to_xarray.ipynb\n.. image:: https://readthedocs.org/projects/wxee/badge/?version=latest&style=flat\n :alt: Read the Docs\n :target: https://wxee.readthedocs.io/en/latest/?badge=latest\n.. image:: https://github.com/aazuspan/wxee/actions/workflows/ci.yml/badge.svg\n :alt: Build status\n :target: https://github.com/aazuspan/wxee\n\n------------\n\n.. image:: https://raw.githubusercontent.com/aazuspan/wxee/main/docs/_static/demo_001.gif\n :alt: Demo downloading weather data to xarray using wxee.\n\n\nWhat is wxee?\n-------------\n`wxee <https://github.com/aazuspan/wxee>`_ was built to make processing gridded, mesoscale time series data quick \nand easy by integrating the data catalog and processing power of `Google Earth Engine <https://earthengine.google.com/>`_ with the \nflexibility of `xarray <https://github.com/pydata/xarray>`_, with no complicated setup required. To accomplish this, wxee implements \nconvenient methods for data processing, aggregation, downloading, and ingestion.\n\n`wxee <https://github.com/aazuspan/wxee>`__ can be found in the `Earth Engine Developer Resources <https://developers.google.com/earth-engine/tutorials/community/developer-resources#python>`_!\n\n\nFeatures\n--------\n* Time series image collections to `xarray <https://wxee.readthedocs.io/en/latest/examples/image_collection_to_xarray.html>`__ or `GeoTIFF <https://wxee.readthedocs.io/en/latest/examples/downloading_images_and_collections.html>`_ in one line of code\n* `Climatological anomalies <https://wxee.readthedocs.io/en/latest/examples/climatology_anomaly.html>`_ and temporal `aggregation <https://wxee.readthedocs.io/en/latest/examples/temporal_aggregation.html>`_, `interpolation <https://wxee.readthedocs.io/en/latest/examples/temporal_interpolation.html>`_, `smoothing <https://wxee.readthedocs.io/en/latest/generated/wxee.time_series.TimeSeries.rolling_time.html>`_, and `gap-filling <https://wxee.readthedocs.io/en/latest/generated/wxee.time_series.TimeSeries.fill_gaps.html>`_ in Earth Engine\n* `Color composite plots <https://wxee.readthedocs.io/en/latest/examples/color_composites.html>`_ from **xarray** datasets\n* Parallel processing for fast downloads\n\n\nTo see some of the capabilities of wxee and try it yourself, check out the interactive notebooks `here <https://wxee.readthedocs.io/en/latest/examples.html>`__!\n\nInstall\n------------\n\nPip\n~~~\n\n.. code-block:: bash\n\n pip install wxee\n\nConda\n~~~~~\n\n.. code-block:: bash\n\n conda install -c conda-forge wxee\n\n\nQuickstart\n----------\n\nSetup\n~~~~~\nOnce you have access to Google Earth Engine, just import and initialize :code:`ee` and :code:`wxee`.\n\n.. code-block:: python\n \n import ee\n import wxee\n\n wxee.Initialize()\n\n\nDownload Images\n~~~~~~~~~~~~~~~\n\nDownload and conversion methods are extended to :code:`ee.Image` and :code:`ee.ImageCollection` using the \n:code:`wx` accessor. Just :code:`import wxee` and use the :code:`wx` accessor.\n\nxarray\n^^^^^^\n\n.. code-block:: python\n\n ee.ImageCollection(\"IDAHO_EPSCOR/GRIDMET\").wx.to_xarray()\n\nGeoTIFF\n^^^^^^^\n\n.. code-block:: python\n\n ee.ImageCollection(\"IDAHO_EPSCOR/GRIDMET\").wx.to_tif()\n\n\nCreate a Time Series\n~~~~~~~~~~~~~~~~~~~~\n\nAdditional methods for processing image collections in the time dimension are available through the :code:`TimeSeries` subclass.\nA :code:`TimeSeries` can be created from an existing :code:`ee.ImageCollection`...\n\n.. code-block:: python\n\n col = ee.ImageCollection(\"IDAHO_EPSCOR/GRIDMET\")\n ts = col.wx.to_time_series()\n\nOr instantiated directly just like you would an :code:`ee.ImageCollection`!\n\n.. code-block:: python\n\n ts = wxee.TimeSeries(\"IDAHO_EPSCOR/GRIDMET\")\n\n\nAggregate Daily Data\n~~~~~~~~~~~~~~~~~~~~\n\nMany weather datasets are in daily or hourly resolution. These can be aggregated to coarser resolutions using the :code:`aggregate_time`\nmethod of the :code:`TimeSeries` class.\n\n.. code-block:: python\n\n ts = wxee.TimeSeries(\"IDAHO_EPSCOR/GRIDMET\")\n monthly_max = ts.aggregate_time(frequency=\"month\", reducer=ee.Reducer.max())\n\nCalculate Climatological Means\n~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n\nLong-term climatological means can be calculated using the :code:`climatology_mean` method of the :code:`TimeSeries` class.\n\n.. code-block:: python\n\n ts = wxee.TimeSeries(\"IDAHO_EPSCOR/GRIDMET\")\n mean_clim = ts.climatology_mean(frequency=\"month\")\n\nContribute\n----------\n\nBugs or feature requests are always appreciated! They can be submitted `here <https://github.com/aazuspan/wxee/issues>`__. \n\nCode contributions are also welcome! Please open an `issue <https://github.com/aazuspan/wxee/issues>`__ to discuss implementation, \nthen follow the steps below. Developer setup instructions can be found `in the docs <https://wxee.readthedocs.io/en/latest/contributing.html>`__.\n\n\n",
"bugtrack_url": null,
"license": null,
"summary": "Earth Engine to xarray interface",
"version": "0.5.0",
"project_urls": {
"Homepage": "https://github.com/aazuspan/wxee"
},
"split_keywords": [
"earth-engine",
" time-series",
" xarray"
],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "8c6f0f6b6e860c11beecc409befceda09cc15dfadd893d43f1179cb260e063c1",
"md5": "7be21fd7dd525f7d1da6664fa52fb9eb",
"sha256": "9c56cf2178c23fac7d8775a6f2eb4181c001e1b345b52a636038e3d313c0d8e8"
},
"downloads": -1,
"filename": "wxee-0.5.0-py3-none-any.whl",
"has_sig": false,
"md5_digest": "7be21fd7dd525f7d1da6664fa52fb9eb",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.8",
"size": 26744,
"upload_time": "2025-08-23T02:31:42",
"upload_time_iso_8601": "2025-08-23T02:31:42.263209Z",
"url": "https://files.pythonhosted.org/packages/8c/6f/0f6b6e860c11beecc409befceda09cc15dfadd893d43f1179cb260e063c1/wxee-0.5.0-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "ceb250f6c923dddd1617a6e5329a74d61cf4408f6e435537f50b7e4b1e1a83f7",
"md5": "7f649180a59e8ca30a2e8080e2ab19d7",
"sha256": "5ad1f2e1c625e2b13ba81c50b84236bde35f7ab578791917a6c23ec0fe4e9f30"
},
"downloads": -1,
"filename": "wxee-0.5.0.tar.gz",
"has_sig": false,
"md5_digest": "7f649180a59e8ca30a2e8080e2ab19d7",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.8",
"size": 21669,
"upload_time": "2025-08-23T02:31:43",
"upload_time_iso_8601": "2025-08-23T02:31:43.680345Z",
"url": "https://files.pythonhosted.org/packages/ce/b2/50f6c923dddd1617a6e5329a74d61cf4408f6e435537f50b7e4b1e1a83f7/wxee-0.5.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-08-23 02:31:43",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "aazuspan",
"github_project": "wxee",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "wxee"
}