# xarrayMannKendall
| Conda | Travis CI (Python 3.8) | Code Coverage | Zenodo |
|:-----:|:----------------------:|:-------------:|:------:|
| [](https://anaconda.org/conda-forge/xarrayMannKendall) | [](https://github.com/josuemtzmo/xarrayMannKendall/actions/workflows/test.yml) | [](https://codecov.io/gh/josuemtzmo/xarrayMannKendall) | [](https://zenodo.org/badge/latestdoi/288618695) |
`xarrayMannKendall` is a module to compute linear trends over 2D and 3D arrays.
For 2D arrays `xarrayMannKendall` uses [xarray](http://xarray.pydata.org/) parallel capabilities to speed up the computation.
For more information on the Mann-Kendall method please refer to:
> Mann, H. B. (1945). Non-parametric tests against trend, *Econometrica*, **13**, 163-171.
> Kendall, M. G. (1975). Rank Correlation Methods, 4th edition, Charles Griffin, London.
> Yue, S. and Wang, C. (2004). The Mann-Kendall test modified by effective sample size to detect trend in serially correlated hydrological series. *Water Resources Management*, **18(3)**, 201–218. doi:[10.1023/b:warm.0000043140.61082.60](https://doi.org/10.1023/b:warm.0000043140.61082.60)
and
> Hussain, M. and Mahmud, I. (2019). pyMannKendall: a python package for non parametric Mann Kendall family of trend tests. *Journal of Open Source Software*, **4(39)**, 1556. doi:[10.21105/joss.01556](https://doi.org/10.21105/joss.01556)
A useful resource can be found [here](https://vsp.pnnl.gov/help/vsample/Design_Trend_Mann_Kendall.htm). Finally, another library that allows to compute a larger range of Mann-Kendall methods is [pyMannKendall](https://github.com/mmhs013/pyMannKendall).
This package was primarily developed for the analyisis of ocean Kinetic Energy trends
over the satellite record period that can be found at doi:[10.1038/s41558-021-01006-9](https://doi.org/10.1038/s41558-021-01006-9).
The data analysed with using this module can be found at [`EKE_SST_trends`](https://github.com/josuemtzmo/EKE_SST_trends) repository.
## Installation:
You can install the latest tagged release of this package via `conda-forge` by:
```
conda install -c conda-forge xarrayMannKendall
```
Alternatively, you can clone the repository and install. To do so, make sure you
have the module requirements (`numpy` & `xarray`):
```
pip install -r requirements.txt
```
```
conda install --file ./requirements.txt
```
Now you can install the module
```
pip install -e .
```
for local installation use
```
pip install --ignore-installed --user .
```
## Cite this code:
This repository can be cited as:
Josué Martínez Moreno, & Navid C. Constantinou. (2021, January 23). josuemtzmo/xarrayMannKendall: Mann Kendall significance test implemented in xarray. (Version v.1.0.0). Zenodo. http://doi.org/10.5281/zenodo.4458777
Raw data
{
"_id": null,
"home_page": "https://github.com/josuemtzmo/xarrayMannKendall",
"name": "xarrayMannKendall",
"maintainer": "",
"docs_url": null,
"requires_python": "",
"maintainer_email": "",
"keywords": "",
"author": "josuemtzmo",
"author_email": "josue.martinezmoreno@anu.edu.au",
"download_url": "https://files.pythonhosted.org/packages/8f/69/f2a82905494432c9503d8bf9b8e0455b39f64cdefd0c6293b6a38e9a9ad4/xarrayMannKendall-1.4.5.tar.gz",
"platform": null,
"description": "\n\n\n# xarrayMannKendall\n\n| Conda | Travis CI (Python 3.8) | Code Coverage | Zenodo |\n|:-----:|:----------------------:|:-------------:|:------:|\n| [](https://anaconda.org/conda-forge/xarrayMannKendall) | [](https://github.com/josuemtzmo/xarrayMannKendall/actions/workflows/test.yml) | [](https://codecov.io/gh/josuemtzmo/xarrayMannKendall) | [](https://zenodo.org/badge/latestdoi/288618695) |\n\n`xarrayMannKendall` is a module to compute linear trends over 2D and 3D arrays.\nFor 2D arrays `xarrayMannKendall` uses [xarray](http://xarray.pydata.org/) parallel capabilities to speed up the computation. \n\nFor more information on the Mann-Kendall method please refer to:\n\n> Mann, H. B. (1945). Non-parametric tests against trend, *Econometrica*, **13**, 163-171.\n\n> Kendall, M. G. (1975). Rank Correlation Methods, 4th edition, Charles Griffin, London.\n\n> Yue, S. and Wang, C. (2004). The Mann-Kendall test modified by effective sample size to detect trend in serially correlated hydrological series. *Water Resources Management*, **18(3)**, 201\u2013218. doi:[10.1023/b:warm.0000043140.61082.60](https://doi.org/10.1023/b:warm.0000043140.61082.60)\n\nand\n\n> Hussain, M. and Mahmud, I. (2019). pyMannKendall: a python package for non parametric Mann Kendall family of trend tests. *Journal of Open Source Software*, **4(39)**, 1556. doi:[10.21105/joss.01556](https://doi.org/10.21105/joss.01556)\n\n\nA useful resource can be found [here](https://vsp.pnnl.gov/help/vsample/Design_Trend_Mann_Kendall.htm). Finally, another library that allows to compute a larger range of Mann-Kendall methods is [pyMannKendall](https://github.com/mmhs013/pyMannKendall).\n\nThis package was primarily developed for the analyisis of ocean Kinetic Energy trends \nover the satellite record period that can be found at doi:[10.1038/s41558-021-01006-9](https://doi.org/10.1038/s41558-021-01006-9).\n\nThe data analysed with using this module can be found at [`EKE_SST_trends`](https://github.com/josuemtzmo/EKE_SST_trends) repository.\n\n## Installation:\n\nYou can install the latest tagged release of this package via `conda-forge` by:\n\n```\nconda install -c conda-forge xarrayMannKendall\n```\n\nAlternatively, you can clone the repository and install. To do so, make sure you\nhave the module requirements (`numpy` & `xarray`):\n\n```\npip install -r requirements.txt \n```\n\n```\nconda install --file ./requirements.txt\n```\n\nNow you can install the module\n\n```\npip install -e .\n```\n\nfor local installation use \n\n```\npip install --ignore-installed --user .\n```\n\n## Cite this code:\n\nThis repository can be cited as:\n\nJosu\u00e9 Mart\u00ednez Moreno, & Navid C. Constantinou. (2021, January 23). josuemtzmo/xarrayMannKendall: Mann Kendall significance test implemented in xarray. (Version v.1.0.0). Zenodo. http://doi.org/10.5281/zenodo.4458777\n",
"bugtrack_url": null,
"license": "MIT License",
"summary": "Mann-Kendall statistical test to assess if a monotonic upward or downward trend exists over time.",
"version": "1.4.5",
"split_keywords": [],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "4452f42122c674f3dc6975d278d393960816a1651d29e9eed53461701dde045d",
"md5": "240f0c9f7b17cc4062722e01f3cbe190",
"sha256": "38167a1988f4a4caccbfe9e6fbd766bd9a8dd0dc92a6fd8a675f6a8cf7269719"
},
"downloads": -1,
"filename": "xarrayMannKendall-1.4.5-py3-none-any.whl",
"has_sig": false,
"md5_digest": "240f0c9f7b17cc4062722e01f3cbe190",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": null,
"size": 8180,
"upload_time": "2023-03-16T18:35:42",
"upload_time_iso_8601": "2023-03-16T18:35:42.693811Z",
"url": "https://files.pythonhosted.org/packages/44/52/f42122c674f3dc6975d278d393960816a1651d29e9eed53461701dde045d/xarrayMannKendall-1.4.5-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "8f69f2a82905494432c9503d8bf9b8e0455b39f64cdefd0c6293b6a38e9a9ad4",
"md5": "a7d6d3bfe274bd725ffb6bc5b258a7f5",
"sha256": "9a4e1f7144021c2235ac1d2f828d7b68a57b8bfb555c7ed3f1bb8314bd28cd8a"
},
"downloads": -1,
"filename": "xarrayMannKendall-1.4.5.tar.gz",
"has_sig": false,
"md5_digest": "a7d6d3bfe274bd725ffb6bc5b258a7f5",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 10270,
"upload_time": "2023-03-16T18:35:44",
"upload_time_iso_8601": "2023-03-16T18:35:44.236924Z",
"url": "https://files.pythonhosted.org/packages/8f/69/f2a82905494432c9503d8bf9b8e0455b39f64cdefd0c6293b6a38e9a9ad4/xarrayMannKendall-1.4.5.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2023-03-16 18:35:44",
"github": true,
"gitlab": false,
"bitbucket": false,
"github_user": "josuemtzmo",
"github_project": "xarrayMannKendall",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"requirements": [],
"lcname": "xarraymannkendall"
}