xclim


Namexclim JSON
Version 0.53.2 PyPI version JSON
download
home_pageNone
SummaryClimate indices computation package based on Xarray.
upload_time2024-10-31 17:31:40
maintainerNone
docs_urlNone
authorNone
requires_python>=3.10.0
licenseNone
keywords xclim xarray climate climatology bias correction ensemble indicators analysis
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            ===============================================================
xclim: Climate services library |logo| |logo-dark| |logo-light|
===============================================================

+----------------------------+-----------------------------------------------------+
| Versions                   | |pypi| |conda| |versions|                           |
+----------------------------+-----------------------------------------------------+
| Documentation and Support  | |docs| |discussions|                                |
+----------------------------+-----------------------------------------------------+
| Open Source                | |license| |fair| |ossf| |zenodo| |pyOpenSci| |joss| |
+----------------------------+-----------------------------------------------------+
| Coding Standards           | |black| |ruff| |pre-commit| |security| |fossa|      |
+----------------------------+-----------------------------------------------------+
| Development Status         | |status| |build| |coveralls|                        |
+----------------------------+-----------------------------------------------------+

`xclim` is an operational Python library for climate services, providing numerous climate-related indicator tools
with an extensible framework for constructing custom climate indicators, statistical downscaling and bias
adjustment of climate model simulations, as well as climate model ensemble analysis tools.

`xclim` is built using `xarray`_ and can seamlessly benefit from the parallelization handling provided by `dask`_.
Its objective is to make it as simple as possible for users to perform typical climate services data treatment workflows.
Leveraging xarray and dask, users can easily bias-adjust climate simulations over large spatial domains or compute indices from large climate datasets.

For example, the following would compute monthly mean temperature from daily mean temperature:

.. code-block:: python

    import xclim
    import xarray as xr

    ds = xr.open_dataset(filename)
    tg = xclim.atmos.tg_mean(ds.tas, freq="MS")

For applications where metadata and missing values are important to get right, xclim provides a class for each index
that validates inputs, checks for missing values, converts units and assigns metadata attributes to the output.
This also provides a mechanism for users to customize the indices to their own specifications and preferences.
`xclim` currently provides over 150 indices related to mean, minimum and maximum daily temperature, daily precipitation,
streamflow and sea ice concentration, numerous bias-adjustment algorithms, as well as a dedicated module for ensemble analysis.

.. _xarray: https://docs.xarray.dev/
.. _dask: https://docs.dask.org/

Quick Install
-------------
`xclim` can be installed from PyPI:

.. code-block:: shell

    $ pip install xclim

or from Anaconda (conda-forge):

.. code-block:: shell

    $ conda install -c conda-forge xclim

Documentation
-------------
The official documentation is at https://xclim.readthedocs.io/

How to make the most of xclim: `Basic Usage Examples`_ and `In-Depth Examples`_.

.. _Basic Usage Examples: https://xclim.readthedocs.io/en/stable/notebooks/usage.html
.. _In-Depth Examples: https://xclim.readthedocs.io/en/stable/notebooks/index.html

Conventions
-----------
In order to provide a coherent interface, `xclim` tries to follow different sets of conventions. In particular, input data should follow the `CF conventions`_ whenever possible for variable attributes. Variable names are usually the ones used in `CMIP6`_, when they exist.

However, xclim will *always* assume the temporal coordinate is named "time". If your data uses another name (for example: "T"), you can rename the variable with:

.. code-block:: python

    ds = ds.rename(T="time")

.. _CF Conventions: http://cfconventions.org/
.. _CMIP6: https://clipc-services.ceda.ac.uk/dreq/mipVars.html

Contributing to xclim
---------------------
`xclim` is in active development and is being used in production by climate services specialists around the world.

* If you're interested in participating in the development of `xclim` by suggesting new features, new indices or report bugs, please leave us a message on the `issue tracker`_.
    * If you have a support/usage question or would like to translate `xclim` to a new language, be sure to check out the existing |discussions| first!

* If you would like to contribute code or documentation (which is greatly appreciated!), check out the `Contributing Guidelines`_ before you begin!

.. _issue tracker: https://github.com/Ouranosinc/xclim/issues
.. _Contributing Guidelines: https://github.com/Ouranosinc/xclim/blob/main/CONTRIBUTING.rst

How to cite this library
------------------------
If you wish to cite `xclim` in a research publication, we kindly ask that you refer to our article published in The Journal of Open Source Software (`JOSS`_): https://doi.org/10.21105/joss.05415

To cite a specific version of `xclim`, the bibliographical reference information can be found through `Zenodo`_

.. _JOSS: https://joss.theoj.org/
.. _Zenodo: https://doi.org/10.5281/zenodo.2795043

License
-------
This is free software: you can redistribute it and/or modify it under the terms of the `Apache License 2.0`_. A copy of this license is provided in the code repository (`LICENSE`_).

.. _Apache License 2.0: https://opensource.org/license/apache-2-0/
.. _LICENSE: https://github.com/Ouranosinc/xclim/blob/main/LICENSE

Credits
-------
`xclim` development is funded through Ouranos_, Environment and Climate Change Canada (ECCC_), the `Fonds vert`_ and the Fonds d'électrification et de changements climatiques (FECC_), the Canadian Foundation for Innovation (CFI_), and the Fonds de recherche du Québec (FRQ_).

This package was created with Cookiecutter_ and the `audreyfeldroy/cookiecutter-pypackage`_ project template.

.. _audreyfeldroy/cookiecutter-pypackage: https://github.com/audreyfeldroy/cookiecutter-pypackage/
.. _CFI: https://www.innovation.ca/
.. _Cookiecutter: https://github.com/cookiecutter/cookiecutter/
.. _ECCC: https://www.canada.ca/en/environment-climate-change.html
.. _FECC: https://www.environnement.gouv.qc.ca/ministere/fonds-electrification-changements-climatiques/index.htm
.. _Fonds vert: https://www.environnement.gouv.qc.ca/ministere/fonds-vert/index.htm
.. _FRQ: https://frq.gouv.qc.ca/
.. _Ouranos: https://www.ouranos.ca/

.. |pypi| image:: https://img.shields.io/pypi/v/xclim.svg
        :target: https://pypi.python.org/pypi/xclim
        :alt: Python Package Index Build

.. |conda| image:: https://img.shields.io/conda/vn/conda-forge/xclim.svg
        :target: https://anaconda.org/conda-forge/xclim
        :alt: Conda-forge Build Version

.. |discussions| image:: https://img.shields.io/badge/GitHub-Discussions-blue
        :target: https://github.com/Ouranosinc/xclim/discussions
        :alt: Static Badge

.. |gitter| image:: https://badges.gitter.im/Ouranosinc/xclim.svg
        :target: https://gitter.im/Ouranosinc/xclim?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge
        :alt: Gitter Chat

.. |build| image:: https://github.com/Ouranosinc/xclim/actions/workflows/main.yml/badge.svg
        :target: https://github.com/Ouranosinc/xclim/actions/workflows/main.yml
        :alt: Build Status

.. |coveralls| image:: https://coveralls.io/repos/github/Ouranosinc/xclim/badge.svg
        :target: https://coveralls.io/github/Ouranosinc/xclim
        :alt: Coveralls

.. |docs| image:: https://readthedocs.org/projects/xclim/badge
        :target: https://xclim.readthedocs.io/en/latest
        :alt: Documentation Status

.. |zenodo| image:: https://zenodo.org/badge/142608764.svg
        :target: https://zenodo.org/badge/latestdoi/142608764
        :alt: DOI

.. |pyOpenSci| image:: https://tinyurl.com/y22nb8up
        :target: https://github.com/pyOpenSci/software-review/issues/73
        :alt: pyOpenSci

.. |joss| image:: https://joss.theoj.org/papers/10.21105/joss.05415/status.svg
        :target: https://doi.org/10.21105/joss.05415
        :alt: JOSS

.. |license| image:: https://img.shields.io/github/license/Ouranosinc/xclim.svg
        :target: https://github.com/Ouranosinc/xclim/blob/main/LICENSE
        :alt: License

.. |security| image:: https://bestpractices.coreinfrastructure.org/projects/6041/badge
        :target: https://bestpractices.coreinfrastructure.org/projects/6041
        :alt: Open Source Security Foundation

.. |fair| image:: https://img.shields.io/badge/fair--software.eu-%E2%97%8F%20%20%E2%97%8F%20%20%E2%97%8F%20%20%E2%97%8F%20%20%E2%97%8B-yellow
        :target: https://fair-software.eu
        :alt: FAIR Software Compliance

.. |ossf| image:: https://api.securityscorecards.dev/projects/github.com/Ouranosinc/xclim/badge
        :target: https://securityscorecards.dev/viewer/?uri=github.com/Ouranosinc/xclim
        :alt: OpenSSF Scorecard

.. |fossa| image:: https://app.fossa.com/api/projects/git%2Bgithub.com%2FOuranosinc%2Fxclim.svg?type=shield
        :target: https://app.fossa.com/projects/git%2Bgithub.com%2FOuranosinc%2Fxclim?ref=badge_shield
        :alt: FOSSA

.. |black| image:: https://img.shields.io/badge/code%20style-black-000000.svg
        :target: https://github.com/psf/black
        :alt: Python Black

.. |logo| image:: https://raw.githubusercontent.com/Ouranosinc/xclim/main/docs/logos/xclim-logo-small-light.png
        :target: https://github.com/Ouranosinc/xclim
        :alt: Xclim
        :class: xclim-logo-small no-theme

.. |logo-light| image:: https://raw.githubusercontent.com/Ouranosinc/xclim/main/docs/logos/empty.png
        :target: https://github.com/Ouranosinc/xclim
        :alt:
        :class: xclim-logo-small only-light-inline

.. |logo-dark| image:: https://raw.githubusercontent.com/Ouranosinc/xclim/main/docs/logos/empty.png
        :target: https://github.com/Ouranosinc/xclim
        :alt:
        :class: xclim-logo-small only-dark-inline

.. |pre-commit| image:: https://results.pre-commit.ci/badge/github/Ouranosinc/xclim/main.svg
        :target: https://results.pre-commit.ci/latest/github/Ouranosinc/xclim/main
        :alt: pre-commit.ci status

.. |ruff| image:: https://img.shields.io/endpoint?url=https://raw.githubusercontent.com/astral-sh/ruff/main/assets/badge/v2.json
    :target: https://github.com/astral-sh/ruff
    :alt: Ruff

.. |status| image:: https://www.repostatus.org/badges/latest/active.svg
        :target: https://www.repostatus.org/#active
        :alt: Project Status: Active – The project has reached a stable, usable state and is being actively developed.

.. |versions| image:: https://img.shields.io/pypi/pyversions/xclim.svg
        :target: https://pypi.python.org/pypi/xclim
        :alt: Supported Python Versions


            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "xclim",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.10.0",
    "maintainer_email": "Trevor James Smith <smith.trevorj@ouranos.ca>, Pascal Bourgault <bourgault.pascal@ouranos.ca>",
    "keywords": "xclim, xarray, climate, climatology, bias correction, ensemble, indicators, analysis",
    "author": null,
    "author_email": "Travis Logan <logan.travis@ouranos.ca>",
    "download_url": "https://files.pythonhosted.org/packages/e9/86/c81a16f24cc9e6a93f474399e4429410ab5d4f59684240a42aafeedb2b68/xclim-0.53.2.tar.gz",
    "platform": null,
    "description": "===============================================================\nxclim: Climate services library |logo| |logo-dark| |logo-light|\n===============================================================\n\n+----------------------------+-----------------------------------------------------+\n| Versions                   | |pypi| |conda| |versions|                           |\n+----------------------------+-----------------------------------------------------+\n| Documentation and Support  | |docs| |discussions|                                |\n+----------------------------+-----------------------------------------------------+\n| Open Source                | |license| |fair| |ossf| |zenodo| |pyOpenSci| |joss| |\n+----------------------------+-----------------------------------------------------+\n| Coding Standards           | |black| |ruff| |pre-commit| |security| |fossa|      |\n+----------------------------+-----------------------------------------------------+\n| Development Status         | |status| |build| |coveralls|                        |\n+----------------------------+-----------------------------------------------------+\n\n`xclim` is an operational Python library for climate services, providing numerous climate-related indicator tools\nwith an extensible framework for constructing custom climate indicators, statistical downscaling and bias\nadjustment of climate model simulations, as well as climate model ensemble analysis tools.\n\n`xclim` is built using `xarray`_ and can seamlessly benefit from the parallelization handling provided by `dask`_.\nIts objective is to make it as simple as possible for users to perform typical climate services data treatment workflows.\nLeveraging xarray and dask, users can easily bias-adjust climate simulations over large spatial domains or compute indices from large climate datasets.\n\nFor example, the following would compute monthly mean temperature from daily mean temperature:\n\n.. code-block:: python\n\n    import xclim\n    import xarray as xr\n\n    ds = xr.open_dataset(filename)\n    tg = xclim.atmos.tg_mean(ds.tas, freq=\"MS\")\n\nFor applications where metadata and missing values are important to get right, xclim provides a class for each index\nthat validates inputs, checks for missing values, converts units and assigns metadata attributes to the output.\nThis also provides a mechanism for users to customize the indices to their own specifications and preferences.\n`xclim` currently provides over 150 indices related to mean, minimum and maximum daily temperature, daily precipitation,\nstreamflow and sea ice concentration, numerous bias-adjustment algorithms, as well as a dedicated module for ensemble analysis.\n\n.. _xarray: https://docs.xarray.dev/\n.. _dask: https://docs.dask.org/\n\nQuick Install\n-------------\n`xclim` can be installed from PyPI:\n\n.. code-block:: shell\n\n    $ pip install xclim\n\nor from Anaconda (conda-forge):\n\n.. code-block:: shell\n\n    $ conda install -c conda-forge xclim\n\nDocumentation\n-------------\nThe official documentation is at https://xclim.readthedocs.io/\n\nHow to make the most of xclim: `Basic Usage Examples`_ and `In-Depth Examples`_.\n\n.. _Basic Usage Examples: https://xclim.readthedocs.io/en/stable/notebooks/usage.html\n.. _In-Depth Examples: https://xclim.readthedocs.io/en/stable/notebooks/index.html\n\nConventions\n-----------\nIn order to provide a coherent interface, `xclim` tries to follow different sets of conventions. In particular, input data should follow the `CF conventions`_ whenever possible for variable attributes. Variable names are usually the ones used in `CMIP6`_, when they exist.\n\nHowever, xclim will *always* assume the temporal coordinate is named \"time\". If your data uses another name (for example: \"T\"), you can rename the variable with:\n\n.. code-block:: python\n\n    ds = ds.rename(T=\"time\")\n\n.. _CF Conventions: http://cfconventions.org/\n.. _CMIP6: https://clipc-services.ceda.ac.uk/dreq/mipVars.html\n\nContributing to xclim\n---------------------\n`xclim` is in active development and is being used in production by climate services specialists around the world.\n\n* If you're interested in participating in the development of `xclim` by suggesting new features, new indices or report bugs, please leave us a message on the `issue tracker`_.\n    * If you have a support/usage question or would like to translate `xclim` to a new language, be sure to check out the existing |discussions| first!\n\n* If you would like to contribute code or documentation (which is greatly appreciated!), check out the `Contributing Guidelines`_ before you begin!\n\n.. _issue tracker: https://github.com/Ouranosinc/xclim/issues\n.. _Contributing Guidelines: https://github.com/Ouranosinc/xclim/blob/main/CONTRIBUTING.rst\n\nHow to cite this library\n------------------------\nIf you wish to cite `xclim` in a research publication, we kindly ask that you refer to our article published in The Journal of Open Source Software (`JOSS`_): https://doi.org/10.21105/joss.05415\n\nTo cite a specific version of `xclim`, the bibliographical reference information can be found through `Zenodo`_\n\n.. _JOSS: https://joss.theoj.org/\n.. _Zenodo: https://doi.org/10.5281/zenodo.2795043\n\nLicense\n-------\nThis is free software: you can redistribute it and/or modify it under the terms of the `Apache License 2.0`_. A copy of this license is provided in the code repository (`LICENSE`_).\n\n.. _Apache License 2.0: https://opensource.org/license/apache-2-0/\n.. _LICENSE: https://github.com/Ouranosinc/xclim/blob/main/LICENSE\n\nCredits\n-------\n`xclim` development is funded through Ouranos_, Environment and Climate Change Canada (ECCC_), the `Fonds vert`_ and the Fonds d'\u00e9lectrification et de changements climatiques (FECC_), the Canadian Foundation for Innovation (CFI_), and the Fonds de recherche du Qu\u00e9bec (FRQ_).\n\nThis package was created with Cookiecutter_ and the `audreyfeldroy/cookiecutter-pypackage`_ project template.\n\n.. _audreyfeldroy/cookiecutter-pypackage: https://github.com/audreyfeldroy/cookiecutter-pypackage/\n.. _CFI: https://www.innovation.ca/\n.. _Cookiecutter: https://github.com/cookiecutter/cookiecutter/\n.. _ECCC: https://www.canada.ca/en/environment-climate-change.html\n.. _FECC: https://www.environnement.gouv.qc.ca/ministere/fonds-electrification-changements-climatiques/index.htm\n.. _Fonds vert: https://www.environnement.gouv.qc.ca/ministere/fonds-vert/index.htm\n.. _FRQ: https://frq.gouv.qc.ca/\n.. _Ouranos: https://www.ouranos.ca/\n\n.. |pypi| image:: https://img.shields.io/pypi/v/xclim.svg\n        :target: https://pypi.python.org/pypi/xclim\n        :alt: Python Package Index Build\n\n.. |conda| image:: https://img.shields.io/conda/vn/conda-forge/xclim.svg\n        :target: https://anaconda.org/conda-forge/xclim\n        :alt: Conda-forge Build Version\n\n.. |discussions| image:: https://img.shields.io/badge/GitHub-Discussions-blue\n        :target: https://github.com/Ouranosinc/xclim/discussions\n        :alt: Static Badge\n\n.. |gitter| image:: https://badges.gitter.im/Ouranosinc/xclim.svg\n        :target: https://gitter.im/Ouranosinc/xclim?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge\n        :alt: Gitter Chat\n\n.. |build| image:: https://github.com/Ouranosinc/xclim/actions/workflows/main.yml/badge.svg\n        :target: https://github.com/Ouranosinc/xclim/actions/workflows/main.yml\n        :alt: Build Status\n\n.. |coveralls| image:: https://coveralls.io/repos/github/Ouranosinc/xclim/badge.svg\n        :target: https://coveralls.io/github/Ouranosinc/xclim\n        :alt: Coveralls\n\n.. |docs| image:: https://readthedocs.org/projects/xclim/badge\n        :target: https://xclim.readthedocs.io/en/latest\n        :alt: Documentation Status\n\n.. |zenodo| image:: https://zenodo.org/badge/142608764.svg\n        :target: https://zenodo.org/badge/latestdoi/142608764\n        :alt: DOI\n\n.. |pyOpenSci| image:: https://tinyurl.com/y22nb8up\n        :target: https://github.com/pyOpenSci/software-review/issues/73\n        :alt: pyOpenSci\n\n.. |joss| image:: https://joss.theoj.org/papers/10.21105/joss.05415/status.svg\n        :target: https://doi.org/10.21105/joss.05415\n        :alt: JOSS\n\n.. |license| image:: https://img.shields.io/github/license/Ouranosinc/xclim.svg\n        :target: https://github.com/Ouranosinc/xclim/blob/main/LICENSE\n        :alt: License\n\n.. |security| image:: https://bestpractices.coreinfrastructure.org/projects/6041/badge\n        :target: https://bestpractices.coreinfrastructure.org/projects/6041\n        :alt: Open Source Security Foundation\n\n.. |fair| image:: https://img.shields.io/badge/fair--software.eu-%E2%97%8F%20%20%E2%97%8F%20%20%E2%97%8F%20%20%E2%97%8F%20%20%E2%97%8B-yellow\n        :target: https://fair-software.eu\n        :alt: FAIR Software Compliance\n\n.. |ossf| image:: https://api.securityscorecards.dev/projects/github.com/Ouranosinc/xclim/badge\n        :target: https://securityscorecards.dev/viewer/?uri=github.com/Ouranosinc/xclim\n        :alt: OpenSSF Scorecard\n\n.. |fossa| image:: https://app.fossa.com/api/projects/git%2Bgithub.com%2FOuranosinc%2Fxclim.svg?type=shield\n        :target: https://app.fossa.com/projects/git%2Bgithub.com%2FOuranosinc%2Fxclim?ref=badge_shield\n        :alt: FOSSA\n\n.. |black| image:: https://img.shields.io/badge/code%20style-black-000000.svg\n        :target: https://github.com/psf/black\n        :alt: Python Black\n\n.. |logo| image:: https://raw.githubusercontent.com/Ouranosinc/xclim/main/docs/logos/xclim-logo-small-light.png\n        :target: https://github.com/Ouranosinc/xclim\n        :alt: Xclim\n        :class: xclim-logo-small no-theme\n\n.. |logo-light| image:: https://raw.githubusercontent.com/Ouranosinc/xclim/main/docs/logos/empty.png\n        :target: https://github.com/Ouranosinc/xclim\n        :alt:\n        :class: xclim-logo-small only-light-inline\n\n.. |logo-dark| image:: https://raw.githubusercontent.com/Ouranosinc/xclim/main/docs/logos/empty.png\n        :target: https://github.com/Ouranosinc/xclim\n        :alt:\n        :class: xclim-logo-small only-dark-inline\n\n.. |pre-commit| image:: https://results.pre-commit.ci/badge/github/Ouranosinc/xclim/main.svg\n        :target: https://results.pre-commit.ci/latest/github/Ouranosinc/xclim/main\n        :alt: pre-commit.ci status\n\n.. |ruff| image:: https://img.shields.io/endpoint?url=https://raw.githubusercontent.com/astral-sh/ruff/main/assets/badge/v2.json\n    :target: https://github.com/astral-sh/ruff\n    :alt: Ruff\n\n.. |status| image:: https://www.repostatus.org/badges/latest/active.svg\n        :target: https://www.repostatus.org/#active\n        :alt: Project Status: Active \u2013 The project has reached a stable, usable state and is being actively developed.\n\n.. |versions| image:: https://img.shields.io/pypi/pyversions/xclim.svg\n        :target: https://pypi.python.org/pypi/xclim\n        :alt: Supported Python Versions\n\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "Climate indices computation package based on Xarray.",
    "version": "0.53.2",
    "project_urls": {
        "About Ouranos": "https://www.ouranos.ca/en/",
        "Changelog": "https://xclim.readthedocs.io/en/stable/history.html",
        "Homepage": "https://xclim.readthedocs.io/",
        "Issue tracker": "https://github.com/Ouranosinc/xclim/issues",
        "Source": "https://github.com/Ouranosinc/xclim/"
    },
    "split_keywords": [
        "xclim",
        " xarray",
        " climate",
        " climatology",
        " bias correction",
        " ensemble",
        " indicators",
        " analysis"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "ad3191ce3626c0eb64fe79de0f515f4d4c72f28ae7e4b408f39418e642526a40",
                "md5": "6102387885f0e24b7dbd07483e2b381e",
                "sha256": "da1fc5f504f5353d75f6038b67a7426be30afcd54c880d2a5214126dcacbcd75"
            },
            "downloads": -1,
            "filename": "xclim-0.53.2-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "6102387885f0e24b7dbd07483e2b381e",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.10.0",
            "size": 437703,
            "upload_time": "2024-10-31T17:31:38",
            "upload_time_iso_8601": "2024-10-31T17:31:38.772000Z",
            "url": "https://files.pythonhosted.org/packages/ad/31/91ce3626c0eb64fe79de0f515f4d4c72f28ae7e4b408f39418e642526a40/xclim-0.53.2-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "e986c81a16f24cc9e6a93f474399e4429410ab5d4f59684240a42aafeedb2b68",
                "md5": "6ade27afff1301345c000add8c70bc27",
                "sha256": "733fb3235fb13af847eb5f1b73d45b6fa6b2a6d9bd5ad69b4110a7a2d7eec868"
            },
            "downloads": -1,
            "filename": "xclim-0.53.2.tar.gz",
            "has_sig": false,
            "md5_digest": "6ade27afff1301345c000add8c70bc27",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.10.0",
            "size": 948294,
            "upload_time": "2024-10-31T17:31:40",
            "upload_time_iso_8601": "2024-10-31T17:31:40.619476Z",
            "url": "https://files.pythonhosted.org/packages/e9/86/c81a16f24cc9e6a93f474399e4429410ab5d4f59684240a42aafeedb2b68/xclim-0.53.2.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-10-31 17:31:40",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "Ouranosinc",
    "github_project": "xclim",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "tox": true,
    "lcname": "xclim"
}
        
Elapsed time: 0.46328s