|DOI| |Stars| |Compatible| |PyPI| |PyPiDownloads| |Docs Status|
======
XClone
======
Inference of Clonal Copy Number Alterations in Single Cells
XClone is an algorithm to infer allele- and haplotype-specific copy numbers
in individual cells from low-coverage and sparse single-cell RNA sequencing data
(e.g., those generated by 10x Genomics, Smart-seq, etc.).
The demo of XClone and results on the all processed cancer datasets are available at
`xclone-data <https://github.com/Rongtingting/xclone-data>`_.
Please frequently read the `tutorials and release history <https://xclone-cnv.readthedocs.io/en/latest/>`_ and keep software up to date since XClone is being updated
and improved frequently at this stage.
.. image:: ./docs/image/XClone_overview_150dpi.png
Installation
============
Main Module
-----------
XClone requires Python 3.7 or Python >=3.9 (Recommend 3.9 for stable performance in latest version).
Details of the environment requirements, see `XClone FAQs <https://xclone-cnv.readthedocs.io/en/latest/FAQ.html#python-environment>`_.
We recommend to use Anaconda environment for version control and to avoid potential conflicts::
conda create -n xclone python=3.9
conda activate xclone
XClone package can be conveniently (1~2mins) installed via PyPI::
pip install xclone
or directly from GitHub repository (for development version)::
pip install git+https://github.com/single-cell-genetics/XClone
Preprocessing via xcltk
-----------------------
xcltk is a toolkit for XClone preprocessing.
xcltk is avaliable through pypi. To install, type the following command line, and add -U for upgrading::
pip install -U xcltk
Alternatively, you can install from this GitHub repository for latest (often development) version by following command line::
pip install -U git+https://github.com/hxj5/xcltk
User Guide
==========
For a complete guide, please see `XClone Documentation <https://xclone-cnv.readthedocs.io/en/latest/>`_.
Documentation
=============
`Tutorials on demo dataset (Glioma sample, BCH869) <https://xclone-cnv.readthedocs.io/en/latest/BCH869_XClone_tutorials.html>`_
`Tutorials on demo dataset (Triple-negative breast cancer sample, TNBC1) <https://xclone-cnv.readthedocs.io/en/latest/TNBC1_XClone_tutorials.html>`_
Download the **Jupyter Notebooks** by clicking the following links:
`Notebook on demo dataset (Glioma sample, BCH869) <https://github.com/Rongtingting/xclone-data/blob/main/examples/BCH869_XClone_tutorials.ipynb>`_
`Notebook on demo dataset (Triple-negative breast cancer sample, TNBC1) <https://github.com/Rongtingting/xclone-data/blob/main/examples/TNBC1_XClone_tutorials.ipynb>`_
`Notebook on demo dataset (Anaplastic thyroid cancer sample, ATC2) <https://github.com/Rongtingting/xclone-data/blob/main/examples/ATC2_XClone_demo.ipynb>`_
`Notebook on demo dataset (Astrocytoma sample, GBM_10XsnRNA) <https://github.com/Rongtingting/xclone-data/tree/main/examples/GBM_10XsnRNA_XClone_demo.ipynb>`_
Ciatation
==========
For details of the method, please checkout our paper `Robust analysis of allele-specific copy number variations from scRNA-seq data with XClone <https://www.biorxiv.org/content/10.1101/2023.04.03.535352v3>`_.
.. |Compatible| image:: https://img.shields.io/badge/python-3.7%203.9-blue
:target: https://pypi.org/project/xclone
:alt: Compatible
.. |DOI| image:: https://img.shields.io/badge/DOI-10.1101/2023.04.03.535352-orange?logo=gitbook&logoColor=FFFFFF&style=flat-square
:target: https://doi.org/10.1101/2023.04.03.535352
:alt: DOI
.. |Stars| image:: https://img.shields.io/github/stars/single-cell-genetics/XClone?logo=GitHub&color=yellow&style=flat-square
:target: https://github.com/single-cell-genetics/XClone
:alt: Stars
.. |PyPI| image:: https://img.shields.io/pypi/v/xclone?logo=PyPi&logoColor=FFFFFF&style=flat-square&color=blue
:target: https://pypi.org/project/xclone
:alt: PyPI
.. |PyPiDownloads| image:: https://static.pepy.tech/personalized-badge/xclone?period=total&units=international_system
:target: https://pepy.tech/project/xclone
:alt: PyPiDownloads
.. |Docs Status| image:: https://img.shields.io/readthedocs/xclone-cnv/latest?logo=readthedocs&logoColor=FFFFFF&style=flat-square
:target: https://xclone-cnv.readthedocs.io/en/latest/
:alt: Docs Status
Raw data
{
"_id": null,
"home_page": "https://github.com/single-cell-genetics/XClone",
"name": "xclone",
"maintainer": null,
"docs_url": null,
"requires_python": null,
"maintainer_email": null,
"keywords": "Copy Number Variation, allelic expression, single-cell RNA-seq, variantional inference",
"author": "Rongting Huang",
"author_email": "rthuang@connect.hku.hk",
"download_url": "https://files.pythonhosted.org/packages/0b/e0/f8e657b0384af7799629bafdfeaad7a1a6a8367693819cc09b5b60b99f58/xclone-0.3.8.tar.gz",
"platform": null,
"description": "|DOI| |Stars| |Compatible| |PyPI| |PyPiDownloads| |Docs Status|\n\n\n======\nXClone\n======\n\nInference of Clonal Copy Number Alterations in Single Cells\n\nXClone is an algorithm to infer allele- and haplotype-specific copy numbers \nin individual cells from low-coverage and sparse single-cell RNA sequencing data \n(e.g., those generated by 10x Genomics, Smart-seq, etc.). \n\n\nThe demo of XClone and results on the all processed cancer datasets are available at\n`xclone-data <https://github.com/Rongtingting/xclone-data>`_.\n\n\nPlease frequently read the `tutorials and release history <https://xclone-cnv.readthedocs.io/en/latest/>`_ and keep software up to date since XClone is being updated \nand improved frequently at this stage.\n\n.. image:: ./docs/image/XClone_overview_150dpi.png\n\n\nInstallation\n============\n\nMain Module\n-----------\n\nXClone requires Python 3.7 or Python >=3.9 (Recommend 3.9 for stable performance in latest version). \nDetails of the environment requirements, see `XClone FAQs <https://xclone-cnv.readthedocs.io/en/latest/FAQ.html#python-environment>`_.\n\nWe recommend to use Anaconda environment for version control and to avoid potential conflicts::\n\n conda create -n xclone python=3.9\n conda activate xclone\n\nXClone package can be conveniently (1~2mins) installed via PyPI::\n\n pip install xclone\n\nor directly from GitHub repository (for development version)::\n\n pip install git+https://github.com/single-cell-genetics/XClone\n\n\nPreprocessing via xcltk \n-----------------------\n\nxcltk is a toolkit for XClone preprocessing.\nxcltk is avaliable through pypi. To install, type the following command line, and add -U for upgrading::\n\n pip install -U xcltk\n\nAlternatively, you can install from this GitHub repository for latest (often development) version by following command line::\n\n pip install -U git+https://github.com/hxj5/xcltk\n\n\nUser Guide\n==========\n\nFor a complete guide, please see `XClone Documentation <https://xclone-cnv.readthedocs.io/en/latest/>`_.\n\n\nDocumentation\n=============\n\n`Tutorials on demo dataset (Glioma sample, BCH869) <https://xclone-cnv.readthedocs.io/en/latest/BCH869_XClone_tutorials.html>`_\n\n`Tutorials on demo dataset (Triple-negative breast cancer sample, TNBC1) <https://xclone-cnv.readthedocs.io/en/latest/TNBC1_XClone_tutorials.html>`_\n\nDownload the **Jupyter Notebooks** by clicking the following links:\n\n`Notebook on demo dataset (Glioma sample, BCH869) <https://github.com/Rongtingting/xclone-data/blob/main/examples/BCH869_XClone_tutorials.ipynb>`_\n\n`Notebook on demo dataset (Triple-negative breast cancer sample, TNBC1) <https://github.com/Rongtingting/xclone-data/blob/main/examples/TNBC1_XClone_tutorials.ipynb>`_\n\n`Notebook on demo dataset (Anaplastic thyroid cancer sample, ATC2) <https://github.com/Rongtingting/xclone-data/blob/main/examples/ATC2_XClone_demo.ipynb>`_\n\n`Notebook on demo dataset (Astrocytoma sample, GBM_10XsnRNA) <https://github.com/Rongtingting/xclone-data/tree/main/examples/GBM_10XsnRNA_XClone_demo.ipynb>`_\n\nCiatation\n==========\n\nFor details of the method, please checkout our paper `Robust analysis of allele-specific copy number variations from scRNA-seq data with XClone <https://www.biorxiv.org/content/10.1101/2023.04.03.535352v3>`_.\n\n.. |Compatible| image:: https://img.shields.io/badge/python-3.7%203.9-blue\n :target: https://pypi.org/project/xclone\n :alt: Compatible\n\n.. |DOI| image:: https://img.shields.io/badge/DOI-10.1101/2023.04.03.535352-orange?logo=gitbook&logoColor=FFFFFF&style=flat-square\n :target: https://doi.org/10.1101/2023.04.03.535352\n :alt: DOI\n\n.. |Stars| image:: https://img.shields.io/github/stars/single-cell-genetics/XClone?logo=GitHub&color=yellow&style=flat-square\n :target: https://github.com/single-cell-genetics/XClone\n :alt: Stars\n\n.. |PyPI| image:: https://img.shields.io/pypi/v/xclone?logo=PyPi&logoColor=FFFFFF&style=flat-square&color=blue\n :target: https://pypi.org/project/xclone\n :alt: PyPI\n\n.. |PyPiDownloads| image:: https://static.pepy.tech/personalized-badge/xclone?period=total&units=international_system\n :target: https://pepy.tech/project/xclone\n :alt: PyPiDownloads\n\n.. |Docs Status| image:: https://img.shields.io/readthedocs/xclone-cnv/latest?logo=readthedocs&logoColor=FFFFFF&style=flat-square\n :target: https://xclone-cnv.readthedocs.io/en/latest/\n :alt: Docs Status\n",
"bugtrack_url": null,
"license": "Apache-2.0",
"summary": "Inference of clonal Copy Number Alterations in single cells",
"version": "0.3.8",
"project_urls": {
"Homepage": "https://github.com/single-cell-genetics/XClone"
},
"split_keywords": [
"copy number variation",
" allelic expression",
" single-cell rna-seq",
" variantional inference"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "d99c9f1ccfa60fcf4fa0077918aee573c9d8edc8de58ecbefa2b12d204bbd1eb",
"md5": "18ef0a1419377236dc6d26f18bf583b6",
"sha256": "249cf4298858f0a9a35a459e79e975d205e4001479404076b16881a6437c1124"
},
"downloads": -1,
"filename": "xclone-0.3.8-py3-none-any.whl",
"has_sig": false,
"md5_digest": "18ef0a1419377236dc6d26f18bf583b6",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": null,
"size": 3252735,
"upload_time": "2024-06-25T02:56:16",
"upload_time_iso_8601": "2024-06-25T02:56:16.136388Z",
"url": "https://files.pythonhosted.org/packages/d9/9c/9f1ccfa60fcf4fa0077918aee573c9d8edc8de58ecbefa2b12d204bbd1eb/xclone-0.3.8-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "0be0f8e657b0384af7799629bafdfeaad7a1a6a8367693819cc09b5b60b99f58",
"md5": "98e1b1f999414fcfd4cde5bc2cf210f9",
"sha256": "67fbf73ece48f41e2ae4531f2554c80ff62472066cb18b11045f7f41307a9115"
},
"downloads": -1,
"filename": "xclone-0.3.8.tar.gz",
"has_sig": false,
"md5_digest": "98e1b1f999414fcfd4cde5bc2cf210f9",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 3194356,
"upload_time": "2024-06-25T02:56:19",
"upload_time_iso_8601": "2024-06-25T02:56:19.392882Z",
"url": "https://files.pythonhosted.org/packages/0b/e0/f8e657b0384af7799629bafdfeaad7a1a6a8367693819cc09b5b60b99f58/xclone-0.3.8.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-06-25 02:56:19",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "single-cell-genetics",
"github_project": "XClone",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"lcname": "xclone"
}