xgb2sql


Namexgb2sql JSON
Version 0.120 PyPI version JSON
download
home_pagehttps://github.com/Chryzanthemum/xgb2sql
SummaryA simple library for converting the output of an XGB model to SQL.
upload_time2024-07-02 06:19:30
maintainerNone
docs_urlNone
authorBenjamin Jiang
requires_python>=3.6
licenseApache Software License 2.0
keywords xgb2sql xgb sql xgboost sql xgboost to sql xgb to sql
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            
<!--

#################################################
### THIS FILE WAS AUTOGENERATED! DO NOT EDIT! ###
#################################################
# file to edit: index.ipynb
# command to build the docs after a change: nbdev_build_docs

-->

# Project name here

> Summary description here.


This file will become your README and also the index of your documentation.

## Install

`pip install xgb2sql`

## How to use

So easy even I could do it!
<div class="codecell" markdown="1">
<div class="input_area" markdown="1">

```python
from xgb2sql import core
import xgboost as xgb
from sklearn.datasets import load_breast_cancer
from sklearn.model_selection import train_test_split

X, y = load_breast_cancer(return_X_y=True)

X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)

woo = xgb.XGBClassifier(n_estimators=5)
woo.fit(X_train, y_train)
xgb.to_graphviz(woo)
```

</div>
<div class="output_area" markdown="1">




![svg](docs/images/output_5_0.svg)



</div>

</div>
<div class="codecell" markdown="1">
<div class="input_area" markdown="1">

```python
tree = core.xgb2sql(woo.get_booster(), 'breast_cancer')
print(tree)
```

</div>
<div class="output_area" markdown="1">

    WITH booster_output AS (
    	SELECT
    		CASE
    			WHEN ((f7 < 0.0489199981) OR (f7 IS NULL))
    			AND ((f20 < 16.8250008) OR (f20 IS NULL))
    			AND ((f10 < 0.591250002) OR (f10 IS NULL))
    		THEN 0.191869915
    			WHEN ((f7 < 0.0489199981) OR (f7 IS NULL))
    			AND ((f20 < 16.8250008) OR (f20 IS NULL))
    			AND (f10 >= 0.591250002)
    		THEN 0
    			WHEN ((f7 < 0.0489199981) OR (f7 IS NULL))
    			AND (f20 >= 16.8250008)
    			AND ((f1 < 18.9599991) OR (f1 IS NULL))
    		THEN 0.120000005
    			WHEN ((f7 < 0.0489199981) OR (f7 IS NULL))
    			AND (f20 >= 16.8250008)
    			AND (f1 >= 18.9599991)
    		THEN -0.13333334
    			WHEN (f7 >= 0.0489199981)
    			AND ((f23 < 785.799988) OR (f23 IS NULL))
    			AND ((f21 < 23.7399998) OR (f21 IS NULL))
    		THEN 0.155555561
    			WHEN (f7 >= 0.0489199981)
    			AND ((f23 < 785.799988) OR (f23 IS NULL))
    			AND (f21 >= 23.7399998)
    		THEN -0.100000001
    			WHEN (f7 >= 0.0489199981)
    			AND (f23 >= 785.799988)
    			AND ((f1 < 14.3000002) OR (f1 IS NULL))
    		THEN 0
    			WHEN (f7 >= 0.0489199981)
    			AND (f23 >= 785.799988)
    			AND (f1 >= 14.3000002)
    		THEN -0.191176474
    		END AS column_0, 
    		CASE
    			WHEN ((f7 < 0.0500999987) OR (f7 IS NULL))
    			AND ((f20 < 16.8250008) OR (f20 IS NULL))
    			AND ((f13 < 38.6049995) OR (f13 IS NULL))
    		THEN 0.17467472
    			WHEN ((f7 < 0.0500999987) OR (f7 IS NULL))
    			AND ((f20 < 16.8250008) OR (f20 IS NULL))
    			AND (f13 >= 38.6049995)
    		THEN 0.0302315652
    			WHEN ((f7 < 0.0500999987) OR (f7 IS NULL))
    			AND (f20 >= 16.8250008)
    			AND ((f1 < 18.9599991) OR (f1 IS NULL))
    		THEN 0.113052242
    			WHEN ((f7 < 0.0500999987) OR (f7 IS NULL))
    			AND (f20 >= 16.8250008)
    			AND (f1 >= 18.9599991)
    		THEN -0.124826349
    			WHEN (f7 >= 0.0500999987)
    			AND ((f22 < 103.25) OR (f22 IS NULL))
    			AND ((f21 < 25.9249992) OR (f21 IS NULL))
    		THEN 0.140555695
    			WHEN (f7 >= 0.0500999987)
    			AND ((f22 < 103.25) OR (f22 IS NULL))
    			AND (f21 >= 25.9249992)
    		THEN -0.0846852511
    			WHEN (f7 >= 0.0500999987)
    			AND (f22 >= 103.25)
    			AND ((f21 < 20.3549995) OR (f21 IS NULL))
    		THEN -0.01987583
    			WHEN (f7 >= 0.0500999987)
    			AND (f22 >= 103.25)
    			AND (f21 >= 20.3549995)
    		THEN -0.174933031
    		END AS column_1, 
    		CASE
    			WHEN ((f27 < 0.142349988) OR (f27 IS NULL))
    			AND ((f20 < 17.6149998) OR (f20 IS NULL))
    			AND ((f13 < 35.2600021) OR (f13 IS NULL))
    		THEN 0.159918889
    			WHEN ((f27 < 0.142349988) OR (f27 IS NULL))
    			AND ((f20 < 17.6149998) OR (f20 IS NULL))
    			AND (f13 >= 35.2600021)
    		THEN 0.0472318567
    			WHEN ((f27 < 0.142349988) OR (f27 IS NULL))
    			AND (f20 >= 17.6149998)
    			AND ((f29 < 0.0649200007) OR (f29 IS NULL))
    		THEN -0.0155247366
    			WHEN ((f27 < 0.142349988) OR (f27 IS NULL))
    			AND (f20 >= 17.6149998)
    			AND (f29 >= 0.0649200007)
    		THEN -0.119407289
    			WHEN (f27 >= 0.142349988)
    			AND ((f23 < 729.549988) OR (f23 IS NULL))
    			AND ((f4 < 0.1083) OR (f4 IS NULL))
    		THEN 0.120342232
    			WHEN (f27 >= 0.142349988)
    			AND ((f23 < 729.549988) OR (f23 IS NULL))
    			AND (f4 >= 0.1083)
    		THEN -0.108723581
    			WHEN (f27 >= 0.142349988)
    			AND (f23 >= 729.549988)
    			AND ((f10 < 0.241250008) OR (f10 IS NULL))
    		THEN -0.0287595335
    			WHEN (f27 >= 0.142349988)
    			AND (f23 >= 729.549988)
    			AND (f10 >= 0.241250008)
    		THEN -0.163232192
    		END AS column_2, 
    		CASE
    			WHEN ((f7 < 0.0489199981) OR (f7 IS NULL))
    			AND ((f20 < 16.8250008) OR (f20 IS NULL))
    			AND ((f10 < 0.528550029) OR (f10 IS NULL))
    		THEN 0.151598975
    			WHEN ((f7 < 0.0489199981) OR (f7 IS NULL))
    			AND ((f20 < 16.8250008) OR (f20 IS NULL))
    			AND (f10 >= 0.528550029)
    		THEN 0.0131686451
    			WHEN ((f7 < 0.0489199981) OR (f7 IS NULL))
    			AND (f20 >= 16.8250008)
    			AND ((f1 < 18.9599991) OR (f1 IS NULL))
    		THEN 0.101920418
    			WHEN ((f7 < 0.0489199981) OR (f7 IS NULL))
    			AND (f20 >= 16.8250008)
    			AND (f1 >= 18.9599991)
    		THEN -0.113945559
    			WHEN (f7 >= 0.0489199981)
    			AND ((f23 < 785.799988) OR (f23 IS NULL))
    			AND ((f21 < 23.7399998) OR (f21 IS NULL))
    		THEN 0.131930456
    			WHEN (f7 >= 0.0489199981)
    			AND ((f23 < 785.799988) OR (f23 IS NULL))
    			AND (f21 >= 23.7399998)
    		THEN -0.0824727714
    			WHEN (f7 >= 0.0489199981)
    			AND (f23 >= 785.799988)
    			AND ((f12 < 2.02349997) OR (f12 IS NULL))
    		THEN -0.0275684185
    			WHEN (f7 >= 0.0489199981)
    			AND (f23 >= 785.799988)
    			AND (f12 >= 2.02349997)
    		THEN -0.155280709
    		END AS column_3, 
    		CASE
    			WHEN ((f27 < 0.145449996) OR (f27 IS NULL))
    			AND ((f22 < 107.599998) OR (f22 IS NULL))
    			AND ((f13 < 46.7900009) OR (f13 IS NULL))
    		THEN 0.142997682
    			WHEN ((f27 < 0.145449996) OR (f27 IS NULL))
    			AND ((f22 < 107.599998) OR (f22 IS NULL))
    			AND (f13 >= 46.7900009)
    		THEN 0.00895034242
    			WHEN ((f27 < 0.145449996) OR (f27 IS NULL))
    			AND (f22 >= 107.599998)
    			AND ((f21 < 20.0849991) OR (f21 IS NULL))
    		THEN 0.12236432
    			WHEN ((f27 < 0.145449996) OR (f27 IS NULL))
    			AND (f22 >= 107.599998)
    			AND (f21 >= 20.0849991)
    		THEN -0.0948726162
    			WHEN (f27 >= 0.145449996)
    			AND ((f23 < 710.200012) OR (f23 IS NULL))
    			AND ((f21 < 25.0550003) OR (f21 IS NULL))
    		THEN 0.0869635344
    			WHEN (f27 >= 0.145449996)
    			AND ((f23 < 710.200012) OR (f23 IS NULL))
    			AND (f21 >= 25.0550003)
    		THEN -0.0576682575
    			WHEN (f27 >= 0.145449996)
    			AND (f23 >= 710.200012)
    			AND ((f6 < 0.0892650038) OR (f6 IS NULL))
    		THEN -0.0451009385
    			WHEN (f27 >= 0.145449996)
    			AND (f23 >= 710.200012)
    			AND (f6 >= 0.0892650038)
    		THEN -0.147640571
    		END AS column_4
    	FROM breast_cancer
    	WHERE source = 'test'
    )
    
    SELECT
        1 / ( 1 + EXP ( - (
        column_0
    	+ column_1
    	+ column_2
    	+ column_3
    	+ column_4 ) ) ) AS score
    FROM booster_output


</div>

</div>
<div class="codecell" markdown="1">
<div class="input_area" markdown="1">

```python
Tada!
```

</div>

</div>

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/Chryzanthemum/xgb2sql",
    "name": "xgb2sql",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.6",
    "maintainer_email": null,
    "keywords": "xgb2sql, xgb sql, xgboost sql, xgboost to sql, xgb to sql",
    "author": "Benjamin Jiang",
    "author_email": "benjamin.jiang@well.co",
    "download_url": "https://files.pythonhosted.org/packages/6b/d8/c07005e03488e583f28204d94dfaf23e01a4168977d28b95c211ba14f59a/xgb2sql-0.120.tar.gz",
    "platform": null,
    "description": "\n<!--\n\n#################################################\n### THIS FILE WAS AUTOGENERATED! DO NOT EDIT! ###\n#################################################\n# file to edit: index.ipynb\n# command to build the docs after a change: nbdev_build_docs\n\n-->\n\n# Project name here\n\n> Summary description here.\n\n\nThis file will become your README and also the index of your documentation.\n\n## Install\n\n`pip install xgb2sql`\n\n## How to use\n\nSo easy even I could do it!\n<div class=\"codecell\" markdown=\"1\">\n<div class=\"input_area\" markdown=\"1\">\n\n```python\nfrom xgb2sql import core\nimport xgboost as xgb\nfrom sklearn.datasets import load_breast_cancer\nfrom sklearn.model_selection import train_test_split\n\nX, y = load_breast_cancer(return_X_y=True)\n\nX_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)\n\nwoo = xgb.XGBClassifier(n_estimators=5)\nwoo.fit(X_train, y_train)\nxgb.to_graphviz(woo)\n```\n\n</div>\n<div class=\"output_area\" markdown=\"1\">\n\n\n\n\n![svg](docs/images/output_5_0.svg)\n\n\n\n</div>\n\n</div>\n<div class=\"codecell\" markdown=\"1\">\n<div class=\"input_area\" markdown=\"1\">\n\n```python\ntree = core.xgb2sql(woo.get_booster(), 'breast_cancer')\nprint(tree)\n```\n\n</div>\n<div class=\"output_area\" markdown=\"1\">\n\n    WITH booster_output AS (\n    \tSELECT\n    \t\tCASE\n    \t\t\tWHEN ((f7 < 0.0489199981) OR (f7 IS NULL))\n    \t\t\tAND ((f20 < 16.8250008) OR (f20 IS NULL))\n    \t\t\tAND ((f10 < 0.591250002) OR (f10 IS NULL))\n    \t\tTHEN 0.191869915\n    \t\t\tWHEN ((f7 < 0.0489199981) OR (f7 IS NULL))\n    \t\t\tAND ((f20 < 16.8250008) OR (f20 IS NULL))\n    \t\t\tAND (f10 >= 0.591250002)\n    \t\tTHEN 0\n    \t\t\tWHEN ((f7 < 0.0489199981) OR (f7 IS NULL))\n    \t\t\tAND (f20 >= 16.8250008)\n    \t\t\tAND ((f1 < 18.9599991) OR (f1 IS NULL))\n    \t\tTHEN 0.120000005\n    \t\t\tWHEN ((f7 < 0.0489199981) OR (f7 IS NULL))\n    \t\t\tAND (f20 >= 16.8250008)\n    \t\t\tAND (f1 >= 18.9599991)\n    \t\tTHEN -0.13333334\n    \t\t\tWHEN (f7 >= 0.0489199981)\n    \t\t\tAND ((f23 < 785.799988) OR (f23 IS NULL))\n    \t\t\tAND ((f21 < 23.7399998) OR (f21 IS NULL))\n    \t\tTHEN 0.155555561\n    \t\t\tWHEN (f7 >= 0.0489199981)\n    \t\t\tAND ((f23 < 785.799988) OR (f23 IS NULL))\n    \t\t\tAND (f21 >= 23.7399998)\n    \t\tTHEN -0.100000001\n    \t\t\tWHEN (f7 >= 0.0489199981)\n    \t\t\tAND (f23 >= 785.799988)\n    \t\t\tAND ((f1 < 14.3000002) OR (f1 IS NULL))\n    \t\tTHEN 0\n    \t\t\tWHEN (f7 >= 0.0489199981)\n    \t\t\tAND (f23 >= 785.799988)\n    \t\t\tAND (f1 >= 14.3000002)\n    \t\tTHEN -0.191176474\n    \t\tEND AS column_0, \n    \t\tCASE\n    \t\t\tWHEN ((f7 < 0.0500999987) OR (f7 IS NULL))\n    \t\t\tAND ((f20 < 16.8250008) OR (f20 IS NULL))\n    \t\t\tAND ((f13 < 38.6049995) OR (f13 IS NULL))\n    \t\tTHEN 0.17467472\n    \t\t\tWHEN ((f7 < 0.0500999987) OR (f7 IS NULL))\n    \t\t\tAND ((f20 < 16.8250008) OR (f20 IS NULL))\n    \t\t\tAND (f13 >= 38.6049995)\n    \t\tTHEN 0.0302315652\n    \t\t\tWHEN ((f7 < 0.0500999987) OR (f7 IS NULL))\n    \t\t\tAND (f20 >= 16.8250008)\n    \t\t\tAND ((f1 < 18.9599991) OR (f1 IS NULL))\n    \t\tTHEN 0.113052242\n    \t\t\tWHEN ((f7 < 0.0500999987) OR (f7 IS NULL))\n    \t\t\tAND (f20 >= 16.8250008)\n    \t\t\tAND (f1 >= 18.9599991)\n    \t\tTHEN -0.124826349\n    \t\t\tWHEN (f7 >= 0.0500999987)\n    \t\t\tAND ((f22 < 103.25) OR (f22 IS NULL))\n    \t\t\tAND ((f21 < 25.9249992) OR (f21 IS NULL))\n    \t\tTHEN 0.140555695\n    \t\t\tWHEN (f7 >= 0.0500999987)\n    \t\t\tAND ((f22 < 103.25) OR (f22 IS NULL))\n    \t\t\tAND (f21 >= 25.9249992)\n    \t\tTHEN -0.0846852511\n    \t\t\tWHEN (f7 >= 0.0500999987)\n    \t\t\tAND (f22 >= 103.25)\n    \t\t\tAND ((f21 < 20.3549995) OR (f21 IS NULL))\n    \t\tTHEN -0.01987583\n    \t\t\tWHEN (f7 >= 0.0500999987)\n    \t\t\tAND (f22 >= 103.25)\n    \t\t\tAND (f21 >= 20.3549995)\n    \t\tTHEN -0.174933031\n    \t\tEND AS column_1, \n    \t\tCASE\n    \t\t\tWHEN ((f27 < 0.142349988) OR (f27 IS NULL))\n    \t\t\tAND ((f20 < 17.6149998) OR (f20 IS NULL))\n    \t\t\tAND ((f13 < 35.2600021) OR (f13 IS NULL))\n    \t\tTHEN 0.159918889\n    \t\t\tWHEN ((f27 < 0.142349988) OR (f27 IS NULL))\n    \t\t\tAND ((f20 < 17.6149998) OR (f20 IS NULL))\n    \t\t\tAND (f13 >= 35.2600021)\n    \t\tTHEN 0.0472318567\n    \t\t\tWHEN ((f27 < 0.142349988) OR (f27 IS NULL))\n    \t\t\tAND (f20 >= 17.6149998)\n    \t\t\tAND ((f29 < 0.0649200007) OR (f29 IS NULL))\n    \t\tTHEN -0.0155247366\n    \t\t\tWHEN ((f27 < 0.142349988) OR (f27 IS NULL))\n    \t\t\tAND (f20 >= 17.6149998)\n    \t\t\tAND (f29 >= 0.0649200007)\n    \t\tTHEN -0.119407289\n    \t\t\tWHEN (f27 >= 0.142349988)\n    \t\t\tAND ((f23 < 729.549988) OR (f23 IS NULL))\n    \t\t\tAND ((f4 < 0.1083) OR (f4 IS NULL))\n    \t\tTHEN 0.120342232\n    \t\t\tWHEN (f27 >= 0.142349988)\n    \t\t\tAND ((f23 < 729.549988) OR (f23 IS NULL))\n    \t\t\tAND (f4 >= 0.1083)\n    \t\tTHEN -0.108723581\n    \t\t\tWHEN (f27 >= 0.142349988)\n    \t\t\tAND (f23 >= 729.549988)\n    \t\t\tAND ((f10 < 0.241250008) OR (f10 IS NULL))\n    \t\tTHEN -0.0287595335\n    \t\t\tWHEN (f27 >= 0.142349988)\n    \t\t\tAND (f23 >= 729.549988)\n    \t\t\tAND (f10 >= 0.241250008)\n    \t\tTHEN -0.163232192\n    \t\tEND AS column_2, \n    \t\tCASE\n    \t\t\tWHEN ((f7 < 0.0489199981) OR (f7 IS NULL))\n    \t\t\tAND ((f20 < 16.8250008) OR (f20 IS NULL))\n    \t\t\tAND ((f10 < 0.528550029) OR (f10 IS NULL))\n    \t\tTHEN 0.151598975\n    \t\t\tWHEN ((f7 < 0.0489199981) OR (f7 IS NULL))\n    \t\t\tAND ((f20 < 16.8250008) OR (f20 IS NULL))\n    \t\t\tAND (f10 >= 0.528550029)\n    \t\tTHEN 0.0131686451\n    \t\t\tWHEN ((f7 < 0.0489199981) OR (f7 IS NULL))\n    \t\t\tAND (f20 >= 16.8250008)\n    \t\t\tAND ((f1 < 18.9599991) OR (f1 IS NULL))\n    \t\tTHEN 0.101920418\n    \t\t\tWHEN ((f7 < 0.0489199981) OR (f7 IS NULL))\n    \t\t\tAND (f20 >= 16.8250008)\n    \t\t\tAND (f1 >= 18.9599991)\n    \t\tTHEN -0.113945559\n    \t\t\tWHEN (f7 >= 0.0489199981)\n    \t\t\tAND ((f23 < 785.799988) OR (f23 IS NULL))\n    \t\t\tAND ((f21 < 23.7399998) OR (f21 IS NULL))\n    \t\tTHEN 0.131930456\n    \t\t\tWHEN (f7 >= 0.0489199981)\n    \t\t\tAND ((f23 < 785.799988) OR (f23 IS NULL))\n    \t\t\tAND (f21 >= 23.7399998)\n    \t\tTHEN -0.0824727714\n    \t\t\tWHEN (f7 >= 0.0489199981)\n    \t\t\tAND (f23 >= 785.799988)\n    \t\t\tAND ((f12 < 2.02349997) OR (f12 IS NULL))\n    \t\tTHEN -0.0275684185\n    \t\t\tWHEN (f7 >= 0.0489199981)\n    \t\t\tAND (f23 >= 785.799988)\n    \t\t\tAND (f12 >= 2.02349997)\n    \t\tTHEN -0.155280709\n    \t\tEND AS column_3, \n    \t\tCASE\n    \t\t\tWHEN ((f27 < 0.145449996) OR (f27 IS NULL))\n    \t\t\tAND ((f22 < 107.599998) OR (f22 IS NULL))\n    \t\t\tAND ((f13 < 46.7900009) OR (f13 IS NULL))\n    \t\tTHEN 0.142997682\n    \t\t\tWHEN ((f27 < 0.145449996) OR (f27 IS NULL))\n    \t\t\tAND ((f22 < 107.599998) OR (f22 IS NULL))\n    \t\t\tAND (f13 >= 46.7900009)\n    \t\tTHEN 0.00895034242\n    \t\t\tWHEN ((f27 < 0.145449996) OR (f27 IS NULL))\n    \t\t\tAND (f22 >= 107.599998)\n    \t\t\tAND ((f21 < 20.0849991) OR (f21 IS NULL))\n    \t\tTHEN 0.12236432\n    \t\t\tWHEN ((f27 < 0.145449996) OR (f27 IS NULL))\n    \t\t\tAND (f22 >= 107.599998)\n    \t\t\tAND (f21 >= 20.0849991)\n    \t\tTHEN -0.0948726162\n    \t\t\tWHEN (f27 >= 0.145449996)\n    \t\t\tAND ((f23 < 710.200012) OR (f23 IS NULL))\n    \t\t\tAND ((f21 < 25.0550003) OR (f21 IS NULL))\n    \t\tTHEN 0.0869635344\n    \t\t\tWHEN (f27 >= 0.145449996)\n    \t\t\tAND ((f23 < 710.200012) OR (f23 IS NULL))\n    \t\t\tAND (f21 >= 25.0550003)\n    \t\tTHEN -0.0576682575\n    \t\t\tWHEN (f27 >= 0.145449996)\n    \t\t\tAND (f23 >= 710.200012)\n    \t\t\tAND ((f6 < 0.0892650038) OR (f6 IS NULL))\n    \t\tTHEN -0.0451009385\n    \t\t\tWHEN (f27 >= 0.145449996)\n    \t\t\tAND (f23 >= 710.200012)\n    \t\t\tAND (f6 >= 0.0892650038)\n    \t\tTHEN -0.147640571\n    \t\tEND AS column_4\n    \tFROM breast_cancer\n    \tWHERE source = 'test'\n    )\n    \n    SELECT\n        1 / ( 1 + EXP ( - (\n        column_0\n    \t+ column_1\n    \t+ column_2\n    \t+ column_3\n    \t+ column_4 ) ) ) AS score\n    FROM booster_output\n\n\n</div>\n\n</div>\n<div class=\"codecell\" markdown=\"1\">\n<div class=\"input_area\" markdown=\"1\">\n\n```python\nTada!\n```\n\n</div>\n\n</div>\n",
    "bugtrack_url": null,
    "license": "Apache Software License 2.0",
    "summary": "A simple library for converting the output of an XGB model to SQL.",
    "version": "0.120",
    "project_urls": {
        "Homepage": "https://github.com/Chryzanthemum/xgb2sql"
    },
    "split_keywords": [
        "xgb2sql",
        " xgb sql",
        " xgboost sql",
        " xgboost to sql",
        " xgb to sql"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "0499249421612b51d56ce74fd2d215e16299748a37026a89af7b501cad69e95f",
                "md5": "55ae7b7357d96fe325eea626603c5dec",
                "sha256": "ef48d972af262737e67d8229a2dafbde5577cf291696a7cf4714cea5c3ca09d7"
            },
            "downloads": -1,
            "filename": "xgb2sql-0.120-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "55ae7b7357d96fe325eea626603c5dec",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.6",
            "size": 9564,
            "upload_time": "2024-07-02T06:19:28",
            "upload_time_iso_8601": "2024-07-02T06:19:28.209088Z",
            "url": "https://files.pythonhosted.org/packages/04/99/249421612b51d56ce74fd2d215e16299748a37026a89af7b501cad69e95f/xgb2sql-0.120-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "6bd8c07005e03488e583f28204d94dfaf23e01a4168977d28b95c211ba14f59a",
                "md5": "68d0a76cbc8711a09c9ff2f8b00ab731",
                "sha256": "f04d5f329b572baba728e15a1cda7146351756c1092c465ca5c0dc265e1dc3ce"
            },
            "downloads": -1,
            "filename": "xgb2sql-0.120.tar.gz",
            "has_sig": false,
            "md5_digest": "68d0a76cbc8711a09c9ff2f8b00ab731",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.6",
            "size": 13439,
            "upload_time": "2024-07-02T06:19:30",
            "upload_time_iso_8601": "2024-07-02T06:19:30.002164Z",
            "url": "https://files.pythonhosted.org/packages/6b/d8/c07005e03488e583f28204d94dfaf23e01a4168977d28b95c211ba14f59a/xgb2sql-0.120.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-07-02 06:19:30",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "Chryzanthemum",
    "github_project": "xgb2sql",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "xgb2sql"
}
        
Elapsed time: 0.38388s