Name | xgrammar JSON |
Version |
0.1.22
JSON |
| download |
home_page | None |
Summary | Efficient, Flexible and Portable Structured Generation |
upload_time | 2025-07-27 23:13:06 |
maintainer | None |
docs_url | None |
author | MLC Team |
requires_python | <4,>=3.8 |
license | Apache 2.0 |
keywords |
machine learning
inference
|
VCS |
 |
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
<div align="center" id="top">
<img src="https://raw.githubusercontent.com/mlc-ai/xgrammar/main/assets/logo.svg" alt="logo" width="400" margin="10px"></img>
[](https://xgrammar.mlc.ai/docs/)
[](https://github.com/mlc-ai/xgrammar/blob/main/LICENSE)
[](https://pypi.org/project/xgrammar)
[](https://pepy.tech/projects/xgrammar)
[](https://deepwiki.com/mlc-ai/xgrammar)
**Efficient, Flexible and Portable Structured Generation**
[Get Started](#get-started) | [Documentation](https://xgrammar.mlc.ai/docs/) | [Blogpost](https://blog.mlc.ai/2024/11/22/achieving-efficient-flexible-portable-structured-generation-with-xgrammar) | [Technical Report](https://arxiv.org/abs/2411.15100)
</div>
## News
- [2025/02] XGrammar has been officially integrated into [Modular's MAX](https://docs.modular.com/max/serve/structured-output)
- [2025/01] XGrammar has been officially integrated into [TensorRT-LLM](https://github.com/NVIDIA/TensorRT-LLM).
- [2024/12] XGrammar has been officially integrated into [vLLM](https://github.com/vllm-project/vllm).
- [2024/12] We presented research talks on XGrammar at CMU, UC Berkeley, MIT, THU, SJTU, Ant Group, LMSys, Qingke AI, Camel AI. The slides can be found [here](https://docs.google.com/presentation/d/1iS7tu2EV4IKRWDaR0F3YD7ubrNqtGYUStSskceneelc/edit?usp=sharing).
- [2024/11] XGrammar has been officially integrated into [SGLang](https://github.com/sgl-project/sglang).
- [2024/11] XGrammar has been officially integrated into [MLC-LLM](https://github.com/mlc-ai/mlc-llm).
- [2024/11] We officially released XGrammar v0.1.0!
## Overview
XGrammar is an open-source library for efficient, flexible, and portable structured generation.
It leverages constrained decoding to ensure **100% structural correctness** of the output. It supports general context-free grammar to enable a broad range of structures, including **JSON**, **regex**, **custom context-free grammar**, etc.
XGrammar uses careful optimizations to achieve extremely low overhead in structured generation. It has achieved **near-zero overhead** in JSON generation, making it one of the fastest structured generation engines available.
XGrammar features **universal deployment**. It supports:
* **Platforms**: Linux, macOS, Windows
* **Hardware**: CPU, NVIDIA GPU, AMD GPU, Apple Silicon, TPU, etc.
* **Languages**: Python, C++, and JavaScript APIs
* **Models**: Qwen, Llama, DeepSeek, Phi, Gemma, etc.
XGrammar is very easy to integrate with LLM inference engines. It is the default structured generation backend for most LLM inference engines, including [**vLLM**](https://github.com/vllm-project/vllm), [**SGLang**](https://github.com/sgl-project/sglang), [**TensorRT-LLM**](https://github.com/NVIDIA/TensorRT-LLM), and [**MLC-LLM**](https://github.com/mlc-ai/mlc-llm), as well as many other companies. You can also try out their structured generation modes!
## Get Started
Install XGrammar:
```bash
pip install xgrammar
```
Import XGrammar:
```python
import xgrammar as xgr
```
Please visit our [documentation](https://xgrammar.mlc.ai/docs/) to get started with XGrammar.
- [Installation](https://xgrammar.mlc.ai/docs/start/installation)
- [Quick start](https://xgrammar.mlc.ai/docs/start/quick_start)
## Adoption
XGrammar has been adopted by many projects and companies, including but not limited to:
<div align="center">
[<img src="https://raw.githubusercontent.com/mlc-ai/XGrammar-web-assets/refs/heads/main/repo/databricks.svg" height=50/>](https://www.databricks.com/)
 
[<img src="https://raw.githubusercontent.com/mlc-ai/XGrammar-web-assets/refs/heads/main/repo/nvidia.svg" height=50/>](https://github.com/NVIDIA/TensorRT-LLM)
 
[<img src="https://raw.githubusercontent.com/mlc-ai/XGrammar-web-assets/refs/heads/main/repo/modular.svg" height=50/>](https://www.modular.com/)
 
[<img src="https://raw.githubusercontent.com/mlc-ai/XGrammar-web-assets/refs/heads/main/repo/sglang.png" height=50/>](https://github.com/sgl-project/sglang)
 
[<img src="https://raw.githubusercontent.com/mlc-ai/XGrammar-web-assets/refs/heads/main/repo/vllm.png" height=50/>](https://github.com/vllm-project/vllm)
 
[<img src="https://raw.githubusercontent.com/mlc-ai/XGrammar-web-assets/refs/heads/main/repo/mlc.jpeg" height=50/>](https://github.com/mlc-ai/mlc-llm)
 
[<span style="font-size:50px">WebLLM</span>](https://github.com/mlc-ai/web-llm)
</div>
## Citation
If you find XGrammar useful in your research, please consider citing our paper:
```bibtex
@article{dong2024xgrammar,
title={Xgrammar: Flexible and efficient structured generation engine for large language models},
author={Dong, Yixin and Ruan, Charlie F and Cai, Yaxing and Lai, Ruihang and Xu, Ziyi and Zhao, Yilong and Chen, Tianqi},
journal={Proceedings of Machine Learning and Systems 7},
year={2024}
}
```
Raw data
{
"_id": null,
"home_page": null,
"name": "xgrammar",
"maintainer": null,
"docs_url": null,
"requires_python": "<4,>=3.8",
"maintainer_email": null,
"keywords": "machine learning, inference",
"author": "MLC Team",
"author_email": null,
"download_url": "https://files.pythonhosted.org/packages/c5/a7/591a83d9ff08feca23646d800811c0aff4ac1d58ca93953ef61c4b91be86/xgrammar-0.1.22.tar.gz",
"platform": null,
"description": "<div align=\"center\" id=\"top\">\n\n<img src=\"https://raw.githubusercontent.com/mlc-ai/xgrammar/main/assets/logo.svg\" alt=\"logo\" width=\"400\" margin=\"10px\"></img>\n\n[](https://xgrammar.mlc.ai/docs/)\n[](https://github.com/mlc-ai/xgrammar/blob/main/LICENSE)\n[](https://pypi.org/project/xgrammar)\n[](https://pepy.tech/projects/xgrammar)\n[](https://deepwiki.com/mlc-ai/xgrammar)\n\n**Efficient, Flexible and Portable Structured Generation**\n\n\n[Get Started](#get-started) | [Documentation](https://xgrammar.mlc.ai/docs/) | [Blogpost](https://blog.mlc.ai/2024/11/22/achieving-efficient-flexible-portable-structured-generation-with-xgrammar) | [Technical Report](https://arxiv.org/abs/2411.15100)\n\n</div>\n\n## News\n- [2025/02] XGrammar has been officially integrated into [Modular's MAX](https://docs.modular.com/max/serve/structured-output)\n- [2025/01] XGrammar has been officially integrated into [TensorRT-LLM](https://github.com/NVIDIA/TensorRT-LLM).\n- [2024/12] XGrammar has been officially integrated into [vLLM](https://github.com/vllm-project/vllm).\n- [2024/12] We presented research talks on XGrammar at CMU, UC Berkeley, MIT, THU, SJTU, Ant Group, LMSys, Qingke AI, Camel AI. The slides can be found [here](https://docs.google.com/presentation/d/1iS7tu2EV4IKRWDaR0F3YD7ubrNqtGYUStSskceneelc/edit?usp=sharing).\n- [2024/11] XGrammar has been officially integrated into [SGLang](https://github.com/sgl-project/sglang).\n- [2024/11] XGrammar has been officially integrated into [MLC-LLM](https://github.com/mlc-ai/mlc-llm).\n- [2024/11] We officially released XGrammar v0.1.0!\n\n## Overview\n\nXGrammar is an open-source library for efficient, flexible, and portable structured generation.\n\nIt leverages constrained decoding to ensure **100% structural correctness** of the output. It supports general context-free grammar to enable a broad range of structures, including **JSON**, **regex**, **custom context-free grammar**, etc.\n\nXGrammar uses careful optimizations to achieve extremely low overhead in structured generation. It has achieved **near-zero overhead** in JSON generation, making it one of the fastest structured generation engines available.\n\nXGrammar features **universal deployment**. It supports:\n* **Platforms**: Linux, macOS, Windows\n* **Hardware**: CPU, NVIDIA GPU, AMD GPU, Apple Silicon, TPU, etc.\n* **Languages**: Python, C++, and JavaScript APIs\n* **Models**: Qwen, Llama, DeepSeek, Phi, Gemma, etc.\n\nXGrammar is very easy to integrate with LLM inference engines. It is the default structured generation backend for most LLM inference engines, including [**vLLM**](https://github.com/vllm-project/vllm), [**SGLang**](https://github.com/sgl-project/sglang), [**TensorRT-LLM**](https://github.com/NVIDIA/TensorRT-LLM), and [**MLC-LLM**](https://github.com/mlc-ai/mlc-llm), as well as many other companies. You can also try out their structured generation modes!\n\n## Get Started\n\nInstall XGrammar:\n```bash\npip install xgrammar\n```\n\nImport XGrammar:\n```python\nimport xgrammar as xgr\n```\n\nPlease visit our [documentation](https://xgrammar.mlc.ai/docs/) to get started with XGrammar.\n- [Installation](https://xgrammar.mlc.ai/docs/start/installation)\n- [Quick start](https://xgrammar.mlc.ai/docs/start/quick_start)\n\n\n## Adoption\n\nXGrammar has been adopted by many projects and companies, including but not limited to:\n\n<div align=\"center\">\n\n[<img src=\"https://raw.githubusercontent.com/mlc-ai/XGrammar-web-assets/refs/heads/main/repo/databricks.svg\" height=50/>](https://www.databricks.com/)\n \n[<img src=\"https://raw.githubusercontent.com/mlc-ai/XGrammar-web-assets/refs/heads/main/repo/nvidia.svg\" height=50/>](https://github.com/NVIDIA/TensorRT-LLM)\n \n[<img src=\"https://raw.githubusercontent.com/mlc-ai/XGrammar-web-assets/refs/heads/main/repo/modular.svg\" height=50/>](https://www.modular.com/)\n \n[<img src=\"https://raw.githubusercontent.com/mlc-ai/XGrammar-web-assets/refs/heads/main/repo/sglang.png\" height=50/>](https://github.com/sgl-project/sglang)\n \n[<img src=\"https://raw.githubusercontent.com/mlc-ai/XGrammar-web-assets/refs/heads/main/repo/vllm.png\" height=50/>](https://github.com/vllm-project/vllm)\n \n[<img src=\"https://raw.githubusercontent.com/mlc-ai/XGrammar-web-assets/refs/heads/main/repo/mlc.jpeg\" height=50/>](https://github.com/mlc-ai/mlc-llm)\n \n[<span style=\"font-size:50px\">WebLLM</span>](https://github.com/mlc-ai/web-llm)\n\n</div>\n\n## Citation\n\nIf you find XGrammar useful in your research, please consider citing our paper:\n\n```bibtex\n@article{dong2024xgrammar,\n title={Xgrammar: Flexible and efficient structured generation engine for large language models},\n author={Dong, Yixin and Ruan, Charlie F and Cai, Yaxing and Lai, Ruihang and Xu, Ziyi and Zhao, Yilong and Chen, Tianqi},\n journal={Proceedings of Machine Learning and Systems 7},\n year={2024}\n}\n```\n",
"bugtrack_url": null,
"license": "Apache 2.0",
"summary": "Efficient, Flexible and Portable Structured Generation",
"version": "0.1.22",
"project_urls": {
"GitHub": "https://github.com/mlc-ai/xgrammar",
"Homepage": "https://xgrammar.mlc.ai/"
},
"split_keywords": [
"machine learning",
" inference"
],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "c5f510587bed6012861484f6eaf96dd6d52d70b9631d0fe0456c7cd71fc54a9b",
"md5": "084056b2b6dde3bbe3e4a8f598e52586",
"sha256": "aa681d7b440bad0fe22c19ece396ac3ad2ca0e74189bf4b758806fb255ca169a"
},
"downloads": -1,
"filename": "xgrammar-0.1.22-cp310-cp310-macosx_10_14_x86_64.whl",
"has_sig": false,
"md5_digest": "084056b2b6dde3bbe3e4a8f598e52586",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": "<4,>=3.8",
"size": 591052,
"upload_time": "2025-07-27T23:12:30",
"upload_time_iso_8601": "2025-07-27T23:12:30.644634Z",
"url": "https://files.pythonhosted.org/packages/c5/f5/10587bed6012861484f6eaf96dd6d52d70b9631d0fe0456c7cd71fc54a9b/xgrammar-0.1.22-cp310-cp310-macosx_10_14_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "727784e2b6e6c2c1acb368ac500182e6102aef16dc134b132ce48ecd4bc2455a",
"md5": "0770132e0c3044be8adad45b15c57848",
"sha256": "74f14daf75825b1634e560dcfe91a0eac5c4b1f9e9a61b1c7fbe039187c690c5"
},
"downloads": -1,
"filename": "xgrammar-0.1.22-cp310-cp310-macosx_11_0_arm64.whl",
"has_sig": false,
"md5_digest": "0770132e0c3044be8adad45b15c57848",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": "<4,>=3.8",
"size": 536934,
"upload_time": "2025-07-27T23:12:32",
"upload_time_iso_8601": "2025-07-27T23:12:32.520373Z",
"url": "https://files.pythonhosted.org/packages/72/77/84e2b6e6c2c1acb368ac500182e6102aef16dc134b132ce48ecd4bc2455a/xgrammar-0.1.22-cp310-cp310-macosx_11_0_arm64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "f52980517ee62d505201dfe2a50d4f972c593e10d4392dcb97b4ab29e41046a9",
"md5": "8905d41640e2f16589c1cac67892f143",
"sha256": "6cbcf0f0c987fa8bf9373357e79be7ff6286d3ac74c56ca4699987c7385979d4"
},
"downloads": -1,
"filename": "xgrammar-0.1.22-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl",
"has_sig": false,
"md5_digest": "8905d41640e2f16589c1cac67892f143",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": "<4,>=3.8",
"size": 7032453,
"upload_time": "2025-07-27T23:12:34",
"upload_time_iso_8601": "2025-07-27T23:12:34.109226Z",
"url": "https://files.pythonhosted.org/packages/f5/29/80517ee62d505201dfe2a50d4f972c593e10d4392dcb97b4ab29e41046a9/xgrammar-0.1.22-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "6cffb8607cae112d95a2e0afde04f89b8de47067dd1f7897fcee841dd7f5f373",
"md5": "342c31c0327a3459e870292810c21865",
"sha256": "236b76e0d5bdbb78a9263619fd718a384cac6d97023e6983d08114ed91bf597f"
},
"downloads": -1,
"filename": "xgrammar-0.1.22-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"has_sig": false,
"md5_digest": "342c31c0327a3459e870292810c21865",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": "<4,>=3.8",
"size": 7215557,
"upload_time": "2025-07-27T23:12:35",
"upload_time_iso_8601": "2025-07-27T23:12:35.919289Z",
"url": "https://files.pythonhosted.org/packages/6c/ff/b8607cae112d95a2e0afde04f89b8de47067dd1f7897fcee841dd7f5f373/xgrammar-0.1.22-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "b7c994cb1a33bcb554cae72e0cb399145b0cb9d52c2d000e52b75082ad39fb55",
"md5": "5602e75609050b73bd6828779ddf0c88",
"sha256": "1b88c184edc237f6abe38cea92504ba34e4c058e55d4fa1c48c46173c4af92d6"
},
"downloads": -1,
"filename": "xgrammar-0.1.22-cp310-cp310-win_amd64.whl",
"has_sig": false,
"md5_digest": "5602e75609050b73bd6828779ddf0c88",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": "<4,>=3.8",
"size": 600474,
"upload_time": "2025-07-27T23:12:37",
"upload_time_iso_8601": "2025-07-27T23:12:37.622744Z",
"url": "https://files.pythonhosted.org/packages/b7/c9/94cb1a33bcb554cae72e0cb399145b0cb9d52c2d000e52b75082ad39fb55/xgrammar-0.1.22-cp310-cp310-win_amd64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "b2deb1b192d1338ec897a37db8e173fd7d20f2359baeaa6d541430f6e2d258c6",
"md5": "34c7d5945436eebe5577dbfc5f2280a9",
"sha256": "4fa0a2a96730d1dd8b323e1338a806f5dccef79e91bdb5fccb1531b57c04c288"
},
"downloads": -1,
"filename": "xgrammar-0.1.22-cp311-cp311-macosx_10_14_x86_64.whl",
"has_sig": false,
"md5_digest": "34c7d5945436eebe5577dbfc5f2280a9",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": "<4,>=3.8",
"size": 590789,
"upload_time": "2025-07-27T23:12:39",
"upload_time_iso_8601": "2025-07-27T23:12:39.391506Z",
"url": "https://files.pythonhosted.org/packages/b2/de/b1b192d1338ec897a37db8e173fd7d20f2359baeaa6d541430f6e2d258c6/xgrammar-0.1.22-cp311-cp311-macosx_10_14_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "b1a88583abbce90fa996435f3db253d75da3f589f95b301be9f534cbf1776a59",
"md5": "9a20e913a88d742892d2ccc3c72d6ead",
"sha256": "75e11fa8a74cf13e1ac635df1441fb793848a97ca5bda4a7ae677702621d381d"
},
"downloads": -1,
"filename": "xgrammar-0.1.22-cp311-cp311-macosx_11_0_arm64.whl",
"has_sig": false,
"md5_digest": "9a20e913a88d742892d2ccc3c72d6ead",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": "<4,>=3.8",
"size": 536760,
"upload_time": "2025-07-27T23:12:40",
"upload_time_iso_8601": "2025-07-27T23:12:40.902443Z",
"url": "https://files.pythonhosted.org/packages/b1/a8/8583abbce90fa996435f3db253d75da3f589f95b301be9f534cbf1776a59/xgrammar-0.1.22-cp311-cp311-macosx_11_0_arm64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "d5ec1ed27ee9acb6bfbb4626c26033d64820fe9079cea4ee52b17a7ddc3f0a6b",
"md5": "ffda78d21347dbda205bcfeab80e8c23",
"sha256": "774010f953caf80b631d46c260f3b798c6fa0fa1a54dad91ad939c7f80f8c2c3"
},
"downloads": -1,
"filename": "xgrammar-0.1.22-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl",
"has_sig": false,
"md5_digest": "ffda78d21347dbda205bcfeab80e8c23",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": "<4,>=3.8",
"size": 7033653,
"upload_time": "2025-07-27T23:12:42",
"upload_time_iso_8601": "2025-07-27T23:12:42.816265Z",
"url": "https://files.pythonhosted.org/packages/d5/ec/1ed27ee9acb6bfbb4626c26033d64820fe9079cea4ee52b17a7ddc3f0a6b/xgrammar-0.1.22-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "c65068995196e5a3755295d60a38eada070fe8ee4ce7701838ff82b61cd6c5ee",
"md5": "3078ae22edf0fe1ecb9c858e26f2a071",
"sha256": "33d0baf9ff43ce016139f69234bc1eafb7929444d4951494980c8ce760fac830"
},
"downloads": -1,
"filename": "xgrammar-0.1.22-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"has_sig": false,
"md5_digest": "3078ae22edf0fe1ecb9c858e26f2a071",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": "<4,>=3.8",
"size": 7215573,
"upload_time": "2025-07-27T23:12:44",
"upload_time_iso_8601": "2025-07-27T23:12:44.630109Z",
"url": "https://files.pythonhosted.org/packages/c6/50/68995196e5a3755295d60a38eada070fe8ee4ce7701838ff82b61cd6c5ee/xgrammar-0.1.22-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "f0e2d8c33f0bfde9130a655b95365887e0c0ab1ca1f13a0b6dac48a1418b7587",
"md5": "0e59a3fe87afb6a763634cf2eae0c29f",
"sha256": "86c42c1f2e24e9fa15a37113b4e84343041da4bc7e370e563ee3d15a58d76bc7"
},
"downloads": -1,
"filename": "xgrammar-0.1.22-cp311-cp311-win_amd64.whl",
"has_sig": false,
"md5_digest": "0e59a3fe87afb6a763634cf2eae0c29f",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": "<4,>=3.8",
"size": 600234,
"upload_time": "2025-07-27T23:12:46",
"upload_time_iso_8601": "2025-07-27T23:12:46.014233Z",
"url": "https://files.pythonhosted.org/packages/f0/e2/d8c33f0bfde9130a655b95365887e0c0ab1ca1f13a0b6dac48a1418b7587/xgrammar-0.1.22-cp311-cp311-win_amd64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "0e8d1e94133d0677bd214571ef0c75f6390d9009e1a007b6f4dff32fb2c67c10",
"md5": "de4c3d9893871c530aaf834bf8a146b1",
"sha256": "db1ada28d1b82f57c8f9219520c1e90159dbcbb901a14da981f6954a49f99276"
},
"downloads": -1,
"filename": "xgrammar-0.1.22-cp312-cp312-macosx_10_14_x86_64.whl",
"has_sig": false,
"md5_digest": "de4c3d9893871c530aaf834bf8a146b1",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": "<4,>=3.8",
"size": 590221,
"upload_time": "2025-07-27T23:12:47",
"upload_time_iso_8601": "2025-07-27T23:12:47.601640Z",
"url": "https://files.pythonhosted.org/packages/0e/8d/1e94133d0677bd214571ef0c75f6390d9009e1a007b6f4dff32fb2c67c10/xgrammar-0.1.22-cp312-cp312-macosx_10_14_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "a5601df3b8a80d4451dc4d9b9b4e865140653722aad5623b3f720c1fbbf64886",
"md5": "62b97c80b30ce857ba72bdbb0af0ef3a",
"sha256": "26b6ef670101c34327711d4fdb91ad2a5b6fcb4edfbc7d12f09dab90ae86fcd2"
},
"downloads": -1,
"filename": "xgrammar-0.1.22-cp312-cp312-macosx_11_0_arm64.whl",
"has_sig": false,
"md5_digest": "62b97c80b30ce857ba72bdbb0af0ef3a",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": "<4,>=3.8",
"size": 536037,
"upload_time": "2025-07-27T23:12:48",
"upload_time_iso_8601": "2025-07-27T23:12:48.785532Z",
"url": "https://files.pythonhosted.org/packages/a5/60/1df3b8a80d4451dc4d9b9b4e865140653722aad5623b3f720c1fbbf64886/xgrammar-0.1.22-cp312-cp312-macosx_11_0_arm64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "84dd51e871b72abfcb51bee4b77ba85c4b024e7ae64d0e4bc9579fdc36f576d0",
"md5": "3599b061418f7c9b7cb15a505b16e261",
"sha256": "665380fdadb09b53e0082259e6047d22ebb187d8c1720fdb8c15eccf2e7539c1"
},
"downloads": -1,
"filename": "xgrammar-0.1.22-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl",
"has_sig": false,
"md5_digest": "3599b061418f7c9b7cb15a505b16e261",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": "<4,>=3.8",
"size": 7035855,
"upload_time": "2025-07-27T23:12:50",
"upload_time_iso_8601": "2025-07-27T23:12:50.369267Z",
"url": "https://files.pythonhosted.org/packages/84/dd/51e871b72abfcb51bee4b77ba85c4b024e7ae64d0e4bc9579fdc36f576d0/xgrammar-0.1.22-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "b9c3f5606bcca661bb2c1a81814d00e079d677bb3726f19e31456955c197a1c6",
"md5": "7717f77020ed37a6db68f455b6c6db00",
"sha256": "84c7d7496e22ff6b5fc8843e37b886a2c3d4c903be4fcb449bfa5d4cac0b937a"
},
"downloads": -1,
"filename": "xgrammar-0.1.22-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"has_sig": false,
"md5_digest": "7717f77020ed37a6db68f455b6c6db00",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": "<4,>=3.8",
"size": 7220113,
"upload_time": "2025-07-27T23:12:52",
"upload_time_iso_8601": "2025-07-27T23:12:52.132635Z",
"url": "https://files.pythonhosted.org/packages/b9/c3/f5606bcca661bb2c1a81814d00e079d677bb3726f19e31456955c197a1c6/xgrammar-0.1.22-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "e8a8452a244fde55bf2416e22e03aac3727b66d4d28ffad9522ebc2d5de1681e",
"md5": "7a8fabde85eb1de8c42d38cb6c34b334",
"sha256": "667060f1141b1e5429731cf194c574db61b98c78f74347cfed7045ade4353050"
},
"downloads": -1,
"filename": "xgrammar-0.1.22-cp312-cp312-win_amd64.whl",
"has_sig": false,
"md5_digest": "7a8fabde85eb1de8c42d38cb6c34b334",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": "<4,>=3.8",
"size": 599607,
"upload_time": "2025-07-27T23:12:53",
"upload_time_iso_8601": "2025-07-27T23:12:53.922989Z",
"url": "https://files.pythonhosted.org/packages/e8/a8/452a244fde55bf2416e22e03aac3727b66d4d28ffad9522ebc2d5de1681e/xgrammar-0.1.22-cp312-cp312-win_amd64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "2750ac9a3256deefb8c741c5e25e9590ba42884faabb8f81a69e38f6723a6d8a",
"md5": "e622008426d5cd5396e9df42936bd4fa",
"sha256": "5139ba561612d7e2bf1c43711357d0d51c30824e93219bcf05caecfeb959cb6e"
},
"downloads": -1,
"filename": "xgrammar-0.1.22-cp313-cp313-macosx_11_0_arm64.whl",
"has_sig": false,
"md5_digest": "e622008426d5cd5396e9df42936bd4fa",
"packagetype": "bdist_wheel",
"python_version": "cp313",
"requires_python": "<4,>=3.8",
"size": 535987,
"upload_time": "2025-07-27T23:12:55",
"upload_time_iso_8601": "2025-07-27T23:12:55.115203Z",
"url": "https://files.pythonhosted.org/packages/27/50/ac9a3256deefb8c741c5e25e9590ba42884faabb8f81a69e38f6723a6d8a/xgrammar-0.1.22-cp313-cp313-macosx_11_0_arm64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "d39575ddb135da2ab943df39a3dc1ab308cdbbbf3091d014315c55ba0bc3c35d",
"md5": "d0e420b25ee87d3b48bf9e3f91eb825e",
"sha256": "6704357e2f377e14ac1a7b9d5b94160f7c6703edc5fc881e7fd470406e2ba9aa"
},
"downloads": -1,
"filename": "xgrammar-0.1.22-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"has_sig": false,
"md5_digest": "d0e420b25ee87d3b48bf9e3f91eb825e",
"packagetype": "bdist_wheel",
"python_version": "cp313",
"requires_python": "<4,>=3.8",
"size": 7219831,
"upload_time": "2025-07-27T23:12:56",
"upload_time_iso_8601": "2025-07-27T23:12:56.363883Z",
"url": "https://files.pythonhosted.org/packages/d3/95/75ddb135da2ab943df39a3dc1ab308cdbbbf3091d014315c55ba0bc3c35d/xgrammar-0.1.22-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "16b68627d334b339fff642de2f6a016e323fcb9fceb34368ee27224cf6519114",
"md5": "aa5b5321866616d9662e1deaf1841223",
"sha256": "d6ea2ca5e6e2584a93944cac18c05ab28a19d23295de904901e32310b6b30342"
},
"downloads": -1,
"filename": "xgrammar-0.1.22-cp313-cp313-win_amd64.whl",
"has_sig": false,
"md5_digest": "aa5b5321866616d9662e1deaf1841223",
"packagetype": "bdist_wheel",
"python_version": "cp313",
"requires_python": "<4,>=3.8",
"size": 599662,
"upload_time": "2025-07-27T23:12:58",
"upload_time_iso_8601": "2025-07-27T23:12:58.347608Z",
"url": "https://files.pythonhosted.org/packages/16/b6/8627d334b339fff642de2f6a016e323fcb9fceb34368ee27224cf6519114/xgrammar-0.1.22-cp313-cp313-win_amd64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "29cc94a570ae94e08839e06fdc66aa771889c3e3feb55e8738914bb3a77cdee2",
"md5": "b3b3bd00d6e0d87204fff4491b31ff1c",
"sha256": "c1044480ee1d2fba609bd2a811467e2a44e2c6d112d4275f5d4f033fc7fa8274"
},
"downloads": -1,
"filename": "xgrammar-0.1.22-cp39-cp39-macosx_10_14_x86_64.whl",
"has_sig": false,
"md5_digest": "b3b3bd00d6e0d87204fff4491b31ff1c",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": "<4,>=3.8",
"size": 591221,
"upload_time": "2025-07-27T23:12:59",
"upload_time_iso_8601": "2025-07-27T23:12:59.810357Z",
"url": "https://files.pythonhosted.org/packages/29/cc/94a570ae94e08839e06fdc66aa771889c3e3feb55e8738914bb3a77cdee2/xgrammar-0.1.22-cp39-cp39-macosx_10_14_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "660f6b25e3dbd02da49c9d5c2d2c72ce186ed0e897055311bf6f46242c26af37",
"md5": "14ed8cba9cf54415d60134a2567be7dd",
"sha256": "cfb50797b6ce70b835507d349c8c82c5c41975620eaca1cf6120b770a3938c37"
},
"downloads": -1,
"filename": "xgrammar-0.1.22-cp39-cp39-macosx_11_0_arm64.whl",
"has_sig": false,
"md5_digest": "14ed8cba9cf54415d60134a2567be7dd",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": "<4,>=3.8",
"size": 537123,
"upload_time": "2025-07-27T23:13:01",
"upload_time_iso_8601": "2025-07-27T23:13:01.299455Z",
"url": "https://files.pythonhosted.org/packages/66/0f/6b25e3dbd02da49c9d5c2d2c72ce186ed0e897055311bf6f46242c26af37/xgrammar-0.1.22-cp39-cp39-macosx_11_0_arm64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "f71cc2b9b7b6e5c310766c5521189934f1e17b6ec4583c0fa8697747e676b7fb",
"md5": "1dc394e7b9fe38fc95cf0264b8baec43",
"sha256": "5e5945c50ab495eb00db3007466986c7bbabfc9ee4d3a18425b2f8c600b0164d"
},
"downloads": -1,
"filename": "xgrammar-0.1.22-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl",
"has_sig": false,
"md5_digest": "1dc394e7b9fe38fc95cf0264b8baec43",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": "<4,>=3.8",
"size": 7034413,
"upload_time": "2025-07-27T23:13:02",
"upload_time_iso_8601": "2025-07-27T23:13:02.554297Z",
"url": "https://files.pythonhosted.org/packages/f7/1c/c2b9b7b6e5c310766c5521189934f1e17b6ec4583c0fa8697747e676b7fb/xgrammar-0.1.22-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "d8a8cf8789acf6a6c147903d438b16859c665cc59cbf471216a74f06edab1061",
"md5": "a5a8d6f55ba864e192827ec4dec91fb7",
"sha256": "bcf0726ebfcfa89d7349a386d66f13e3e1c8783625264af6d29b48aeaae5ca0d"
},
"downloads": -1,
"filename": "xgrammar-0.1.22-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"has_sig": false,
"md5_digest": "a5a8d6f55ba864e192827ec4dec91fb7",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": "<4,>=3.8",
"size": 7214385,
"upload_time": "2025-07-27T23:13:04",
"upload_time_iso_8601": "2025-07-27T23:13:04.073589Z",
"url": "https://files.pythonhosted.org/packages/d8/a8/cf8789acf6a6c147903d438b16859c665cc59cbf471216a74f06edab1061/xgrammar-0.1.22-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "0980d7c88542a4d461932e88cc43303c56d57a4a756bf18a0404f48581e71431",
"md5": "2f0c728a0e6a7e937603875f90b50827",
"sha256": "5eb7c884f9052cebed599744e834ca2f3f8c73ce50f83b9277914293131e1c0f"
},
"downloads": -1,
"filename": "xgrammar-0.1.22-cp39-cp39-win_amd64.whl",
"has_sig": false,
"md5_digest": "2f0c728a0e6a7e937603875f90b50827",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": "<4,>=3.8",
"size": 600744,
"upload_time": "2025-07-27T23:13:05",
"upload_time_iso_8601": "2025-07-27T23:13:05.597102Z",
"url": "https://files.pythonhosted.org/packages/09/80/d7c88542a4d461932e88cc43303c56d57a4a756bf18a0404f48581e71431/xgrammar-0.1.22-cp39-cp39-win_amd64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "c5a7591a83d9ff08feca23646d800811c0aff4ac1d58ca93953ef61c4b91be86",
"md5": "be8f2e9a658747aeaefd2c78e8003853",
"sha256": "bc435e7a21c69bed149697b09939494e24bad31ed0a38ec827117dc8f890b96f"
},
"downloads": -1,
"filename": "xgrammar-0.1.22.tar.gz",
"has_sig": false,
"md5_digest": "be8f2e9a658747aeaefd2c78e8003853",
"packagetype": "sdist",
"python_version": "source",
"requires_python": "<4,>=3.8",
"size": 2248007,
"upload_time": "2025-07-27T23:13:06",
"upload_time_iso_8601": "2025-07-27T23:13:06.877945Z",
"url": "https://files.pythonhosted.org/packages/c5/a7/591a83d9ff08feca23646d800811c0aff4ac1d58ca93953ef61c4b91be86/xgrammar-0.1.22.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-07-27 23:13:06",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "mlc-ai",
"github_project": "xgrammar",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "xgrammar"
}