xinvert


Namexinvert JSON
Version 0.1.7 PyPI version JSON
download
home_pagehttps://github.com/miniufo/xinvert
SummaryInvert geofluid problems based on xarray, using SOR iteration
upload_time2024-04-07 09:34:58
maintainerNone
docs_urlNone
authorminiufo
requires_pythonNone
licenseMIT
keywords invert inversion atmosphere ocean sor successive-overrelaxation-iteration
VCS
bugtrack_url
requirements xarray dask scipy numba netCDF4
Travis-CI
coveralls test coverage No coveralls.
            # xinvert

[![DOI](https://zenodo.org/badge/323045845.svg)](https://zenodo.org/badge/latestdoi/323045845)
![GitHub](https://img.shields.io/github/license/miniufo/xinvert)
[![Documentation Status](https://readthedocs.org/projects/xinvert/badge/?version=latest)](https://xinvert.readthedocs.io/en/latest/?badge=latest)
[![PyPI version](https://badge.fury.io/py/xinvert.svg)](https://badge.fury.io/py/xinvert)
![Workflow](https://github.com/miniufo/xinvert/actions/workflows/python-publish.yml/badge.svg)
[![pytest](https://github.com/miniufo/xinvert/actions/workflows/tests.yml/badge.svg)](https://github.com/miniufo/xinvert/actions/workflows/tests.yml)
[![Build Status](https://app.travis-ci.com/miniufo/xinvert.svg?branch=master)](https://app.travis-ci.com/miniufo/xinvert)
[![status](https://joss.theoj.org/papers/1fc4ac8f98c0778516971880727a3a94/status.svg)](https://joss.theoj.org/papers/1fc4ac8f98c0778516971880727a3a94)


![animate plot](https://raw.githubusercontent.com/miniufo/xinvert/master/pics/animateConverge.gif)


## 1. Introduction
Researches on meteorology and oceanography usually encounter [inversion problems](https://doi.org/10.1017/CBO9780511629570) that need to be solved numerically.  One of the classical inversion problem is to solve Poisson equation for a streamfunction $\psi$ given the vertical component of vorticity $\zeta$ and proper boundary conditions.

> $$\nabla^2\psi=\zeta$$

Nowadays [`xarray`](http://xarray.pydata.org/en/stable/) becomes a popular data structure commonly used in [Big Data Geoscience](https://pangeo.io/).  Since the whole 4D data, as well as the coordinate information, are all combined into [`xarray`](http://xarray.pydata.org/en/stable/), solving the inversion problem become quite straightforward and the only input would be just one [`xarray.DataArray`](http://xarray.pydata.org/en/stable/) of vorticity.  Inversion on the spherical earth, like some meteorological problems, could utilize the spherical harmonics like [windspharm](https://github.com/ajdawson/windspharm), which would be more efficient using FFT than SOR used here.  However, in the case of ocean, SOR method is definitely a better choice in the presence of irregular land/sea mask.

More importantly, this could be generalized into a numerical solver for elliptical equation using [SOR](https://mathworld.wolfram.com/SuccessiveOverrelaxationMethod.html) method, with spatially-varying coefficients.  Various popular inversion problems in geofluid dynamics will be illustrated as examples.

One problem with SOR is that the speed of iteration using **explicit loops in Python** will be **e-x-t-r-e-m-e-l-y ... s-l-o-w**!  A very suitable solution here is to use [`numba`](https://numba.pydata.org/).  We may try our best to speed things up using more hardwares (possibly GPU).

Classical problems include Gill-Matsuno model, Stommel-Munk model, QG omega model, PV inversion model, Swayer-Eliassen balance model...  A complete list of the classical inversion problems can be found at [this notebook](./docs/source/notebooks/00_Introduction.ipynb).

Why `xinvert`?

- **Thinking and coding in equations:** User APIs are very close to the equations: unknowns are on the LHS of `=`, whereas the known forcings are on its RHS;
- **Genearlize all the steady-state problems:** All the known steady-state problems in geophysical fluid dynamics can be easily adapted to fit the solvers;
- **Very short parameter list:** Passing a single `xarray` forcing is enough for the inversion.  Coordinates information is already encapsulated.
- **Flexible model parameters:** Model paramters can be either a constant, or varying with a specific dimension (like Coriolis $f$), or fully varying with space and time, due to the use of `xarray`'s broadcasting capability;
- **Parallel inverting:** The use of `xarray`, and thus `dask` allow parallel inverting, which is almost transparent to the user;
- **Pure Python code for C-code speed:** The use of `numba` allow pure python code in this package but native speed;

---
## 2. How to install
**Requirements**
`xinvert` is developed under the environment with `xarray` (=version 0.15.0), `dask` (=version 2.11.0), `numpy` (=version 1.15.4), and `numba` (=version 0.51.2).  Older versions of these packages are not well tested.


**Install via pip**
```bash
pip install xinvert
```

**Install from github**
```bash
git clone https://github.com/miniufo/xinvert.git
cd xinvert
python setup.py install
```


---
## 3. Examples:
This is a list of the problems that can be solved by `xinvert`:

|    Gallery    |    Gallery    |
| :-----------: | :-----------: |
| <img src="./pics/Gallery_Streamfunction.png" width="380"><br/>[invert Poisson equation for<br/> horizontal streamfunction](./docs/source/notebooks/01_Poisson_equation_horizontal.ipynb) | <img src="./pics/Gallery_Overturning.png" width="380"><br/>[invert Poisson equation for<br/> overturning streamfunction](./docs/source/notebooks/02_Poisson_equation_vertical.ipynb) |
| <img src="./pics/Gallery_balanceMass.png" width="380"><br/>[invert geostrophic equation for<br/> balanced mass](./docs/source/notebooks/03_Balanced_mass_and_flow.ipynb) | <img src="./pics/Gallery_Eliassen.png" width="380"><br/>[invert Eliassen model for<br/> overturning streamfunction](./docs/source/notebooks/04_Eliassen_model.ipynb) |
| <img src="./pics/Gallery_SWMReference.png" width="380"><br/>[invert PV balance equation for<br/> steady reference state](./docs/source/notebooks/05_reference_SWM.ipynb)| <img src="./pics/Gallery_GillMatsuno.png" width="380"><br/>[invert Gill-Matsuno model for<br/> wind and mass fields](./docs/source/notebooks/07_Gill_Matsuno_model.ipynb) |
| <img src="./pics/Gallery_StommelMunk.png" width="380"><br/>[invert Stommel-Munk model for<br/> wind-driven ocean circulation](./docs/source/notebooks/08_Stommel_Munk_model.ipynb) | <img src="./pics/Gallery_Fofonoff.png" width="380"><br/>[invert Fofonoff model for<br/> inviscid/adiabatic steady state](./docs/source/notebooks/09_Fofonoff_flow.ipynb) |
| <img src="./pics/Gallery_Bretherton.png" width="380"><br/>[invert Bretherton model for<br/> steady flow over topography](./docs/source/notebooks/10_Bretherton_flow_over_topography.ipynb) | <img src="./pics/Gallery_Omega.png" width="380"><br/>[invert Omega equation for<br/> QG vertical velocity](./docs/source/notebooks/11_Omega_equation.ipynb) |



## 4 Animate the convergence of iteration
One can see the whole convergence process of SOR iteration as:
```python
from xinvert import animate_iteration

# output has 1 more dimension (iter) than input, which could be animated over.
# Here 40 frames and loop 1 per frame (final state is after 40 iterations) is used.
psi = animate_iteration(invert_Poisson, vor, iParams=iParams,
                        loop_per_frame=1, max_frames=40)
```

See the animation at the top.



## 5 Cite

If you use the package in research, teaching, or other activities, we would be grateful
if you mention `xinvert` and cite our paper in JOSS:

```bibtex
@article{Qian2023,
    doi = {10.21105/joss.05510},
    url = {https://doi.org/10.21105/joss.05510},
    year = {2023},
    publisher = {The Open Journal},
    volume = {8},
    number = {89},
    pages = {5510},
    author = {Yu-Kun Qian},
    title = {xinvert: A Python package for inversion problems in geophysical fluid dynamics}, journal = {Journal of Open Source Software}
}
```

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/miniufo/xinvert",
    "name": "xinvert",
    "maintainer": null,
    "docs_url": null,
    "requires_python": null,
    "maintainer_email": null,
    "keywords": "invert inversion atmosphere ocean SOR successive-overrelaxation-iteration",
    "author": "miniufo",
    "author_email": "miniufo@163.com",
    "download_url": "https://files.pythonhosted.org/packages/8f/4b/5e688ad85bfe8484a11d60dc714614e0a9e39e295d3d56896914a7406dce/xinvert-0.1.7.tar.gz",
    "platform": null,
    "description": "# xinvert\n\n[![DOI](https://zenodo.org/badge/323045845.svg)](https://zenodo.org/badge/latestdoi/323045845)\n![GitHub](https://img.shields.io/github/license/miniufo/xinvert)\n[![Documentation Status](https://readthedocs.org/projects/xinvert/badge/?version=latest)](https://xinvert.readthedocs.io/en/latest/?badge=latest)\n[![PyPI version](https://badge.fury.io/py/xinvert.svg)](https://badge.fury.io/py/xinvert)\n![Workflow](https://github.com/miniufo/xinvert/actions/workflows/python-publish.yml/badge.svg)\n[![pytest](https://github.com/miniufo/xinvert/actions/workflows/tests.yml/badge.svg)](https://github.com/miniufo/xinvert/actions/workflows/tests.yml)\n[![Build Status](https://app.travis-ci.com/miniufo/xinvert.svg?branch=master)](https://app.travis-ci.com/miniufo/xinvert)\n[![status](https://joss.theoj.org/papers/1fc4ac8f98c0778516971880727a3a94/status.svg)](https://joss.theoj.org/papers/1fc4ac8f98c0778516971880727a3a94)\n\n\n![animate plot](https://raw.githubusercontent.com/miniufo/xinvert/master/pics/animateConverge.gif)\n\n\n## 1. Introduction\nResearches on meteorology and oceanography usually encounter [inversion problems](https://doi.org/10.1017/CBO9780511629570) that need to be solved numerically.  One of the classical inversion problem is to solve Poisson equation for a streamfunction $\\psi$ given the vertical component of vorticity $\\zeta$ and proper boundary conditions.\n\n> $$\\nabla^2\\psi=\\zeta$$\n\nNowadays [`xarray`](http://xarray.pydata.org/en/stable/) becomes a popular data structure commonly used in [Big Data Geoscience](https://pangeo.io/).  Since the whole 4D data, as well as the coordinate information, are all combined into [`xarray`](http://xarray.pydata.org/en/stable/), solving the inversion problem become quite straightforward and the only input would be just one [`xarray.DataArray`](http://xarray.pydata.org/en/stable/) of vorticity.  Inversion on the spherical earth, like some meteorological problems, could utilize the spherical harmonics like [windspharm](https://github.com/ajdawson/windspharm), which would be more efficient using FFT than SOR used here.  However, in the case of ocean, SOR method is definitely a better choice in the presence of irregular land/sea mask.\n\nMore importantly, this could be generalized into a numerical solver for elliptical equation using [SOR](https://mathworld.wolfram.com/SuccessiveOverrelaxationMethod.html) method, with spatially-varying coefficients.  Various popular inversion problems in geofluid dynamics will be illustrated as examples.\n\nOne problem with SOR is that the speed of iteration using **explicit loops in Python** will be **e-x-t-r-e-m-e-l-y ... s-l-o-w**!  A very suitable solution here is to use [`numba`](https://numba.pydata.org/).  We may try our best to speed things up using more hardwares (possibly GPU).\n\nClassical problems include Gill-Matsuno model, Stommel-Munk model, QG omega model, PV inversion model, Swayer-Eliassen balance model...  A complete list of the classical inversion problems can be found at [this notebook](./docs/source/notebooks/00_Introduction.ipynb).\n\nWhy `xinvert`?\n\n- **Thinking and coding in equations:** User APIs are very close to the equations: unknowns are on the LHS of `=`, whereas the known forcings are on its RHS;\n- **Genearlize all the steady-state problems:** All the known steady-state problems in geophysical fluid dynamics can be easily adapted to fit the solvers;\n- **Very short parameter list:** Passing a single `xarray` forcing is enough for the inversion.  Coordinates information is already encapsulated.\n- **Flexible model parameters:** Model paramters can be either a constant, or varying with a specific dimension (like Coriolis $f$), or fully varying with space and time, due to the use of `xarray`'s broadcasting capability;\n- **Parallel inverting:** The use of `xarray`, and thus `dask` allow parallel inverting, which is almost transparent to the user;\n- **Pure Python code for C-code speed:** The use of `numba` allow pure python code in this package but native speed;\n\n---\n## 2. How to install\n**Requirements**\n`xinvert` is developed under the environment with `xarray` (=version 0.15.0), `dask` (=version 2.11.0), `numpy` (=version 1.15.4), and `numba` (=version 0.51.2).  Older versions of these packages are not well tested.\n\n\n**Install via pip**\n```bash\npip install xinvert\n```\n\n**Install from github**\n```bash\ngit clone https://github.com/miniufo/xinvert.git\ncd xinvert\npython setup.py install\n```\n\n\n---\n## 3. Examples:\nThis is a list of the problems that can be solved by `xinvert`:\n\n|    Gallery    |    Gallery    |\n| :-----------: | :-----------: |\n| <img src=\"./pics/Gallery_Streamfunction.png\" width=\"380\"><br/>[invert Poisson equation for<br/> horizontal streamfunction](./docs/source/notebooks/01_Poisson_equation_horizontal.ipynb) | <img src=\"./pics/Gallery_Overturning.png\" width=\"380\"><br/>[invert Poisson equation for<br/> overturning streamfunction](./docs/source/notebooks/02_Poisson_equation_vertical.ipynb) |\n| <img src=\"./pics/Gallery_balanceMass.png\" width=\"380\"><br/>[invert geostrophic equation for<br/> balanced mass](./docs/source/notebooks/03_Balanced_mass_and_flow.ipynb) | <img src=\"./pics/Gallery_Eliassen.png\" width=\"380\"><br/>[invert Eliassen model for<br/> overturning streamfunction](./docs/source/notebooks/04_Eliassen_model.ipynb) |\n| <img src=\"./pics/Gallery_SWMReference.png\" width=\"380\"><br/>[invert PV balance equation for<br/> steady reference state](./docs/source/notebooks/05_reference_SWM.ipynb)| <img src=\"./pics/Gallery_GillMatsuno.png\" width=\"380\"><br/>[invert Gill-Matsuno model for<br/> wind and mass fields](./docs/source/notebooks/07_Gill_Matsuno_model.ipynb) |\n| <img src=\"./pics/Gallery_StommelMunk.png\" width=\"380\"><br/>[invert Stommel-Munk model for<br/> wind-driven ocean circulation](./docs/source/notebooks/08_Stommel_Munk_model.ipynb) | <img src=\"./pics/Gallery_Fofonoff.png\" width=\"380\"><br/>[invert Fofonoff model for<br/> inviscid/adiabatic steady state](./docs/source/notebooks/09_Fofonoff_flow.ipynb) |\n| <img src=\"./pics/Gallery_Bretherton.png\" width=\"380\"><br/>[invert Bretherton model for<br/> steady flow over topography](./docs/source/notebooks/10_Bretherton_flow_over_topography.ipynb) | <img src=\"./pics/Gallery_Omega.png\" width=\"380\"><br/>[invert Omega equation for<br/> QG vertical velocity](./docs/source/notebooks/11_Omega_equation.ipynb) |\n\n\n\n## 4 Animate the convergence of iteration\nOne can see the whole convergence process of SOR iteration as:\n```python\nfrom xinvert import animate_iteration\n\n# output has 1 more dimension (iter) than input, which could be animated over.\n# Here 40 frames and loop 1 per frame (final state is after 40 iterations) is used.\npsi = animate_iteration(invert_Poisson, vor, iParams=iParams,\n                        loop_per_frame=1, max_frames=40)\n```\n\nSee the animation at the top.\n\n\n\n## 5 Cite\n\nIf you use the package in research, teaching, or other activities, we would be grateful\nif you mention `xinvert` and cite our paper in JOSS:\n\n```bibtex\n@article{Qian2023,\n    doi = {10.21105/joss.05510},\n    url = {https://doi.org/10.21105/joss.05510},\n    year = {2023},\n    publisher = {The Open Journal},\n    volume = {8},\n    number = {89},\n    pages = {5510},\n    author = {Yu-Kun Qian},\n    title = {xinvert: A Python package for inversion problems in geophysical fluid dynamics}, journal = {Journal of Open Source Software}\n}\n```\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Invert geofluid problems based on xarray, using SOR iteration",
    "version": "0.1.7",
    "project_urls": {
        "Homepage": "https://github.com/miniufo/xinvert"
    },
    "split_keywords": [
        "invert",
        "inversion",
        "atmosphere",
        "ocean",
        "sor",
        "successive-overrelaxation-iteration"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "b9a106886d2d5634bded5325ece62db1fd5f2252d50a3b65895c5ec737efb88b",
                "md5": "c53cfe25cadb3890b067077d7145659a",
                "sha256": "e35ae225abbdbfd29ce9b38a1d5ebcc978e3d6b10d273fb51933a3236cebd87d"
            },
            "downloads": -1,
            "filename": "xinvert-0.1.7-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "c53cfe25cadb3890b067077d7145659a",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 32657,
            "upload_time": "2024-04-07T09:34:57",
            "upload_time_iso_8601": "2024-04-07T09:34:57.300615Z",
            "url": "https://files.pythonhosted.org/packages/b9/a1/06886d2d5634bded5325ece62db1fd5f2252d50a3b65895c5ec737efb88b/xinvert-0.1.7-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "8f4b5e688ad85bfe8484a11d60dc714614e0a9e39e295d3d56896914a7406dce",
                "md5": "61bbc7e2871d1e53c1118db349ad16ed",
                "sha256": "8e15bbb6ad3297796eeb0e725e25bc91474d5eaf3e3563b0da56fe9254be44b7"
            },
            "downloads": -1,
            "filename": "xinvert-0.1.7.tar.gz",
            "has_sig": false,
            "md5_digest": "61bbc7e2871d1e53c1118db349ad16ed",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 52750,
            "upload_time": "2024-04-07T09:34:58",
            "upload_time_iso_8601": "2024-04-07T09:34:58.569898Z",
            "url": "https://files.pythonhosted.org/packages/8f/4b/5e688ad85bfe8484a11d60dc714614e0a9e39e295d3d56896914a7406dce/xinvert-0.1.7.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-04-07 09:34:58",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "miniufo",
    "github_project": "xinvert",
    "travis_ci": true,
    "coveralls": false,
    "github_actions": true,
    "requirements": [
        {
            "name": "xarray",
            "specs": []
        },
        {
            "name": "dask",
            "specs": []
        },
        {
            "name": "scipy",
            "specs": []
        },
        {
            "name": "numba",
            "specs": []
        },
        {
            "name": "netCDF4",
            "specs": []
        }
    ],
    "lcname": "xinvert"
}
        
Elapsed time: 1.66550s