xisf


Namexisf JSON
Version 0.9.5 PyPI version JSON
download
home_page
SummaryEncoder/Decoder for XISF (Extensible Image Serialization Format)
upload_time2024-03-02 11:26:51
maintainer
docs_urlNone
author
requires_python>=3.6
licenseGNU General Public License v3 (GPLv3)
keywords astronomy xisf
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            <a id="xisf"></a>

# xisf

XISF Encoder/Decoder (see https://pixinsight.com/xisf/).

This implementation is not endorsed nor related with PixInsight development team.

Copyright (C) 2021-2022 Sergio Díaz, sergiodiaz.eu

This program is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation, version 3 of the License.

This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
more details.

You should have received a copy of the GNU General Public License along with
this program.  If not, see <http://www.gnu.org/licenses/>.

<a id="xisf.XISF"></a>

## XISF Objects

```python
class XISF()
```

Implements an baseline XISF Decoder and a simple baseline Encoder.
It parses metadata from Image and Metadata XISF core elements. Image data is returned as a numpy ndarray 
(using the "channels-last" convention by default). 

What's supported: 
- Monolithic XISF files only
    - XISF data blocks with attachment, inline or embedded block locations 
    - Planar pixel storage models, *however it assumes 2D images only* (with multiple channels)
    - UInt8/16/32 and Float32/64 pixel sample formats
    - Grayscale and RGB color spaces     
- Decoding:
    - multiple Image core elements from a monolithic XISF file
    - Support all standard compression codecs defined in this specification for decompression 
      (zlib/lz4[hc]/zstd + byte shuffling)
- Encoding:
    - Single image core element with an attached data block
    - Support all standard compression codecs defined in this specification for decompression 
      (zlib/lz4[hc]/zstd + byte shuffling)
- "Atomic" properties (scalar types, String, TimePoint), Vector and Matrix (e.g. astrometric solutions)
- Metadata and FITSKeyword core elements

What's not supported (at least by now):
- Read pixel data in the normal pixel storage models
- Read pixel data in the planar pixel storage models other than 2D images
- Complex and Table properties
- Any other not explicitly supported core elements (Resolution, Thumbnail, ICCProfile, etc.)

Usage example:
```
from xisf import XISF
import matplotlib.pyplot as plt
xisf = XISF("file.xisf")
file_meta = xisf.get_file_metadata()    
file_meta
ims_meta = xisf.get_images_metadata()
ims_meta
im_data = xisf.read_image(0)
plt.imshow(im_data)
plt.show()
XISF.write(
    "output.xisf", im_data, 
    creator_app="My script v1.0", image_metadata=ims_meta[0], xisf_metadata=file_meta, 
    codec='lz4hc', shuffle=True
)
```

If the file is not huge and it contains only an image (or you're interested just in one of the 
images inside the file), there is a convenience method for reading the data and the metadata:
```
from xisf import XISF
import matplotlib.pyplot as plt    
im_data = XISF.read("file.xisf")
plt.imshow(im_data)
plt.show()
```

The XISF format specification is available at https://pixinsight.com/doc/docs/XISF-1.0-spec/XISF-1.0-spec.html

<a id="xisf.XISF.__init__"></a>

#### \_\_init\_\_

```python
def __init__(fname)
```

Opens a XISF file and extract its metadata. To get the metadata and the images, see get_file_metadata(),
get_images_metadata() and read_image().

**Arguments**:

- `fname` - filename
  

**Returns**:

  XISF object.

<a id="xisf.XISF.get_images_metadata"></a>

#### get\_images\_metadata

```python
def get_images_metadata()
```

Provides the metadata of all image blocks contained in the XISF File, extracted from
the header (<Image> core elements). To get the actual image data, see read_image().

It outputs a dictionary m_i for each image, with the following structure:

```
m_i = { 
    'geometry': (width, height, channels), # only 2D images (with multiple channels) are supported
    'location': (pos, size), # used internally in read_image()
    'dtype': np.dtype('...'), # derived from sampleFormat argument
    'compression': (codec, uncompressed_size, item_size), # optional
    'key': 'value', # other <Image> attributes are simply copied 
    ..., 
    'FITSKeywords': { <fits_keyword>: fits_keyword_values_list, ... }, 
    'XISFProperties': { <xisf_property_name>: property_dict, ... }
}

where:

fits_keyword_values_list = [ {'value': <value>, 'comment': <comment> }, ...]
property_dict = {'id': <xisf_property_name>, 'type': <xisf_type>, 'value': property_value, ...}
```

**Returns**:

  list [ m_0, m_1, ..., m_{n-1} ] where m_i is a dict as described above.

<a id="xisf.XISF.get_file_metadata"></a>

#### get\_file\_metadata

```python
def get_file_metadata()
```

Provides the metadata from the header of the XISF File (<Metadata> core elements).

**Returns**:

  dictionary with one entry per property: { <xisf_property_name>: property_dict, ... }
  where:
  ```
  property_dict = {'id': <xisf_property_name>, 'type': <xisf_type>, 'value': property_value, ...}
  ```

<a id="xisf.XISF.get_metadata_xml"></a>

#### get\_metadata\_xml

```python
def get_metadata_xml()
```

Returns the complete XML header as a xml.etree.ElementTree.Element object.

**Returns**:

- `xml.etree.ElementTree.Element` - complete XML XISF header

<a id="xisf.XISF.read_image"></a>

#### read\_image

```python
def read_image(n=0, data_format='channels_last')
```

Extracts an image from a XISF object.

**Arguments**:

- `n` - index of the image to extract in the list returned by get_images_metadata()
- `data_format` - channels axis can be 'channels_first' or 'channels_last' (as used in
  keras/tensorflow, pyplot's imshow, etc.), 0 by default.
  

**Returns**:

  Numpy ndarray with the image data, in the requested format (channels_first or channels_last).

<a id="xisf.XISF.read"></a>

#### read

```python
@staticmethod
def read(fname, n=0, image_metadata={}, xisf_metadata={})
```

Convenience method for reading a file containing a single image.

**Arguments**:

- `fname` _string_ - filename
- `n` _int, optional_ - index of the image to extract (in the list returned by get_images_metadata()). Defaults to 0.
- `image_metadata` _dict, optional_ - dictionary that will be updated with the metadata of the image.
- `xisf_metadata` _dict, optional_ - dictionary that will be updated with the metadata of the file.
  

**Returns**:

- `[np.ndarray]` - Numpy ndarray with the image data, in the requested format (channels_first or channels_last).

<a id="xisf.XISF.write"></a>

#### write

```python
@staticmethod
def write(fname, im_data, creator_app=None, image_metadata={}, xisf_metadata={}, codec=None, shuffle=False, level=None)
```

Writes an image (numpy array) to a XISF file. Compression may be requested but it only
will be used if it actually reduces the data size.

**Arguments**:

- `fname` - filename (will overwrite if existing)
- `im_data` - numpy ndarray with the image data
- `creator_app` - string for XISF:CreatorApplication file property (defaults to python version in None provided)
- `image_metadata` - dict with the same structure described for m_i in get_images_metadata().
  Only 'FITSKeywords' and 'XISFProperties' keys are actually written, the rest are derived from im_data.
- `xisf_metadata` - file metadata, dict with the same structure returned by get_file_metadata()
- `codec` - compression codec ('zlib', 'lz4', 'lz4hc' or 'zstd'), or None to disable compression
- `shuffle` - whether to apply byte-shuffling before compression (ignored if codec is None). Recommended
  for 'lz4' ,'lz4hc' and 'zstd' compression algorithms.
- `level` - for zlib, 1..9 (default: 6); for lz4hc, 1..12 (default: 9); for zstd, 1..22 (default: 3).
  Higher means more compression.

**Returns**:

- `bytes_written` - the total number of bytes written into the output file.
- `codec` - The codec actually used, i.e., None if compression did not reduce the data block size so
  compression was not finally used.


            

Raw data

            {
    "_id": null,
    "home_page": "",
    "name": "xisf",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.6",
    "maintainer_email": "",
    "keywords": "astronomy,XISF",
    "author": "",
    "author_email": "Sergio D\u00edaz <sergio.diaz.ruiz@gmail.com>",
    "download_url": "https://files.pythonhosted.org/packages/62/1d/eabf63b49878eeb3ef4ec8519c98f2cdbe3148e20d865dd8aff0e902f7e6/xisf-0.9.5.tar.gz",
    "platform": null,
    "description": "<a id=\"xisf\"></a>\r\n\r\n# xisf\r\n\r\nXISF Encoder/Decoder (see https://pixinsight.com/xisf/).\r\n\r\nThis implementation is not endorsed nor related with PixInsight development team.\r\n\r\nCopyright (C) 2021-2022 Sergio D\u00edaz, sergiodiaz.eu\r\n\r\nThis program is free software: you can redistribute it and/or modify it\r\nunder the terms of the GNU General Public License as published by the\r\nFree Software Foundation, version 3 of the License.\r\n\r\nThis program is distributed in the hope that it will be useful, but WITHOUT\r\nANY WARRANTY; without even the implied warranty of MERCHANTABILITY or\r\nFITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for\r\nmore details.\r\n\r\nYou should have received a copy of the GNU General Public License along with\r\nthis program.  If not, see <http://www.gnu.org/licenses/>.\r\n\r\n<a id=\"xisf.XISF\"></a>\r\n\r\n## XISF Objects\r\n\r\n```python\r\nclass XISF()\r\n```\r\n\r\nImplements an baseline XISF Decoder and a simple baseline Encoder.\r\nIt parses metadata from Image and Metadata XISF core elements. Image data is returned as a numpy ndarray \r\n(using the \"channels-last\" convention by default). \r\n\r\nWhat's supported: \r\n- Monolithic XISF files only\r\n    - XISF data blocks with attachment, inline or embedded block locations \r\n    - Planar pixel storage models, *however it assumes 2D images only* (with multiple channels)\r\n    - UInt8/16/32 and Float32/64 pixel sample formats\r\n    - Grayscale and RGB color spaces     \r\n- Decoding:\r\n    - multiple Image core elements from a monolithic XISF file\r\n    - Support all standard compression codecs defined in this specification for decompression \r\n      (zlib/lz4[hc]/zstd + byte shuffling)\r\n- Encoding:\r\n    - Single image core element with an attached data block\r\n    - Support all standard compression codecs defined in this specification for decompression \r\n      (zlib/lz4[hc]/zstd + byte shuffling)\r\n- \"Atomic\" properties (scalar types, String, TimePoint), Vector and Matrix (e.g. astrometric solutions)\r\n- Metadata and FITSKeyword core elements\r\n\r\nWhat's not supported (at least by now):\r\n- Read pixel data in the normal pixel storage models\r\n- Read pixel data in the planar pixel storage models other than 2D images\r\n- Complex and Table properties\r\n- Any other not explicitly supported core elements (Resolution, Thumbnail, ICCProfile, etc.)\r\n\r\nUsage example:\r\n```\r\nfrom xisf import XISF\r\nimport matplotlib.pyplot as plt\r\nxisf = XISF(\"file.xisf\")\r\nfile_meta = xisf.get_file_metadata()    \r\nfile_meta\r\nims_meta = xisf.get_images_metadata()\r\nims_meta\r\nim_data = xisf.read_image(0)\r\nplt.imshow(im_data)\r\nplt.show()\r\nXISF.write(\r\n    \"output.xisf\", im_data, \r\n    creator_app=\"My script v1.0\", image_metadata=ims_meta[0], xisf_metadata=file_meta, \r\n    codec='lz4hc', shuffle=True\r\n)\r\n```\r\n\r\nIf the file is not huge and it contains only an image (or you're interested just in one of the \r\nimages inside the file), there is a convenience method for reading the data and the metadata:\r\n```\r\nfrom xisf import XISF\r\nimport matplotlib.pyplot as plt    \r\nim_data = XISF.read(\"file.xisf\")\r\nplt.imshow(im_data)\r\nplt.show()\r\n```\r\n\r\nThe XISF format specification is available at https://pixinsight.com/doc/docs/XISF-1.0-spec/XISF-1.0-spec.html\r\n\r\n<a id=\"xisf.XISF.__init__\"></a>\r\n\r\n#### \\_\\_init\\_\\_\r\n\r\n```python\r\ndef __init__(fname)\r\n```\r\n\r\nOpens a XISF file and extract its metadata. To get the metadata and the images, see get_file_metadata(),\r\nget_images_metadata() and read_image().\r\n\r\n**Arguments**:\r\n\r\n- `fname` - filename\r\n  \r\n\r\n**Returns**:\r\n\r\n  XISF object.\r\n\r\n<a id=\"xisf.XISF.get_images_metadata\"></a>\r\n\r\n#### get\\_images\\_metadata\r\n\r\n```python\r\ndef get_images_metadata()\r\n```\r\n\r\nProvides the metadata of all image blocks contained in the XISF File, extracted from\r\nthe header (<Image> core elements). To get the actual image data, see read_image().\r\n\r\nIt outputs a dictionary m_i for each image, with the following structure:\r\n\r\n```\r\nm_i = { \r\n    'geometry': (width, height, channels), # only 2D images (with multiple channels) are supported\r\n    'location': (pos, size), # used internally in read_image()\r\n    'dtype': np.dtype('...'), # derived from sampleFormat argument\r\n    'compression': (codec, uncompressed_size, item_size), # optional\r\n    'key': 'value', # other <Image> attributes are simply copied \r\n    ..., \r\n    'FITSKeywords': { <fits_keyword>: fits_keyword_values_list, ... }, \r\n    'XISFProperties': { <xisf_property_name>: property_dict, ... }\r\n}\r\n\r\nwhere:\r\n\r\nfits_keyword_values_list = [ {'value': <value>, 'comment': <comment> }, ...]\r\nproperty_dict = {'id': <xisf_property_name>, 'type': <xisf_type>, 'value': property_value, ...}\r\n```\r\n\r\n**Returns**:\r\n\r\n  list [ m_0, m_1, ..., m_{n-1} ] where m_i is a dict as described above.\r\n\r\n<a id=\"xisf.XISF.get_file_metadata\"></a>\r\n\r\n#### get\\_file\\_metadata\r\n\r\n```python\r\ndef get_file_metadata()\r\n```\r\n\r\nProvides the metadata from the header of the XISF File (<Metadata> core elements).\r\n\r\n**Returns**:\r\n\r\n  dictionary with one entry per property: { <xisf_property_name>: property_dict, ... }\r\n  where:\r\n  ```\r\n  property_dict = {'id': <xisf_property_name>, 'type': <xisf_type>, 'value': property_value, ...}\r\n  ```\r\n\r\n<a id=\"xisf.XISF.get_metadata_xml\"></a>\r\n\r\n#### get\\_metadata\\_xml\r\n\r\n```python\r\ndef get_metadata_xml()\r\n```\r\n\r\nReturns the complete XML header as a xml.etree.ElementTree.Element object.\r\n\r\n**Returns**:\r\n\r\n- `xml.etree.ElementTree.Element` - complete XML XISF header\r\n\r\n<a id=\"xisf.XISF.read_image\"></a>\r\n\r\n#### read\\_image\r\n\r\n```python\r\ndef read_image(n=0, data_format='channels_last')\r\n```\r\n\r\nExtracts an image from a XISF object.\r\n\r\n**Arguments**:\r\n\r\n- `n` - index of the image to extract in the list returned by get_images_metadata()\r\n- `data_format` - channels axis can be 'channels_first' or 'channels_last' (as used in\r\n  keras/tensorflow, pyplot's imshow, etc.), 0 by default.\r\n  \r\n\r\n**Returns**:\r\n\r\n  Numpy ndarray with the image data, in the requested format (channels_first or channels_last).\r\n\r\n<a id=\"xisf.XISF.read\"></a>\r\n\r\n#### read\r\n\r\n```python\r\n@staticmethod\r\ndef read(fname, n=0, image_metadata={}, xisf_metadata={})\r\n```\r\n\r\nConvenience method for reading a file containing a single image.\r\n\r\n**Arguments**:\r\n\r\n- `fname` _string_ - filename\r\n- `n` _int, optional_ - index of the image to extract (in the list returned by get_images_metadata()). Defaults to 0.\r\n- `image_metadata` _dict, optional_ - dictionary that will be updated with the metadata of the image.\r\n- `xisf_metadata` _dict, optional_ - dictionary that will be updated with the metadata of the file.\r\n  \r\n\r\n**Returns**:\r\n\r\n- `[np.ndarray]` - Numpy ndarray with the image data, in the requested format (channels_first or channels_last).\r\n\r\n<a id=\"xisf.XISF.write\"></a>\r\n\r\n#### write\r\n\r\n```python\r\n@staticmethod\r\ndef write(fname, im_data, creator_app=None, image_metadata={}, xisf_metadata={}, codec=None, shuffle=False, level=None)\r\n```\r\n\r\nWrites an image (numpy array) to a XISF file. Compression may be requested but it only\r\nwill be used if it actually reduces the data size.\r\n\r\n**Arguments**:\r\n\r\n- `fname` - filename (will overwrite if existing)\r\n- `im_data` - numpy ndarray with the image data\r\n- `creator_app` - string for XISF:CreatorApplication file property (defaults to python version in None provided)\r\n- `image_metadata` - dict with the same structure described for m_i in get_images_metadata().\r\n  Only 'FITSKeywords' and 'XISFProperties' keys are actually written, the rest are derived from im_data.\r\n- `xisf_metadata` - file metadata, dict with the same structure returned by get_file_metadata()\r\n- `codec` - compression codec ('zlib', 'lz4', 'lz4hc' or 'zstd'), or None to disable compression\r\n- `shuffle` - whether to apply byte-shuffling before compression (ignored if codec is None). Recommended\r\n  for 'lz4' ,'lz4hc' and 'zstd' compression algorithms.\r\n- `level` - for zlib, 1..9 (default: 6); for lz4hc, 1..12 (default: 9); for zstd, 1..22 (default: 3).\r\n  Higher means more compression.\r\n\r\n**Returns**:\r\n\r\n- `bytes_written` - the total number of bytes written into the output file.\r\n- `codec` - The codec actually used, i.e., None if compression did not reduce the data block size so\r\n  compression was not finally used.\r\n\r\n",
    "bugtrack_url": null,
    "license": "GNU General Public License v3 (GPLv3)",
    "summary": "Encoder/Decoder for XISF (Extensible Image Serialization Format)",
    "version": "0.9.5",
    "project_urls": {
        "Homepage": "https://github.com/sergio-dr/xisf"
    },
    "split_keywords": [
        "astronomy",
        "xisf"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "cda7be5345f9000558a3c905be3526043cd68471ab5243cdf9ca1b84f760dc7b",
                "md5": "69c78e61090849c0522ceb6ff65e32a2",
                "sha256": "c04d92048ecf04b57e24cdf04360c35c1b712e4ba5014e57e16fb7ebd94ae15d"
            },
            "downloads": -1,
            "filename": "xisf-0.9.5-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "69c78e61090849c0522ceb6ff65e32a2",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.6",
            "size": 27131,
            "upload_time": "2024-03-02T11:26:49",
            "upload_time_iso_8601": "2024-03-02T11:26:49.544242Z",
            "url": "https://files.pythonhosted.org/packages/cd/a7/be5345f9000558a3c905be3526043cd68471ab5243cdf9ca1b84f760dc7b/xisf-0.9.5-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "621deabf63b49878eeb3ef4ec8519c98f2cdbe3148e20d865dd8aff0e902f7e6",
                "md5": "1791b85009ad6ce73c625794ef8c547a",
                "sha256": "14c19cf90060d38bb8f299f00ec903eef17e9a75709fb6308e12f6349b989b68"
            },
            "downloads": -1,
            "filename": "xisf-0.9.5.tar.gz",
            "has_sig": false,
            "md5_digest": "1791b85009ad6ce73c625794ef8c547a",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.6",
            "size": 30166,
            "upload_time": "2024-03-02T11:26:51",
            "upload_time_iso_8601": "2024-03-02T11:26:51.393258Z",
            "url": "https://files.pythonhosted.org/packages/62/1d/eabf63b49878eeb3ef4ec8519c98f2cdbe3148e20d865dd8aff0e902f7e6/xisf-0.9.5.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-03-02 11:26:51",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "sergio-dr",
    "github_project": "xisf",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "xisf"
}
        
Elapsed time: 0.39573s