[![Multi-Modality](agorabanner.png)](https://discord.gg/qUtxnK2NMf)
# xLSTM
Implementation of xLSTM in Pytorch from the paper: "xLSTM: Extended Long Short-Term Memory"
# License
MIT
Raw data
{
"_id": null,
"home_page": "https://github.com/kyegomez/xLSTM",
"name": "xlstm-torch",
"maintainer": null,
"docs_url": null,
"requires_python": "<4.0,>=3.6",
"maintainer_email": null,
"keywords": "artificial intelligence, deep learning, optimizers, Prompt Engineering",
"author": "Kye Gomez",
"author_email": "kye@apac.ai",
"download_url": "https://files.pythonhosted.org/packages/b0/10/584abbf5f15f2302aeda5faaaeb54253f96074e5b56af196076502a98a5c/xlstm_torch-0.0.2.tar.gz",
"platform": null,
"description": "[![Multi-Modality](agorabanner.png)](https://discord.gg/qUtxnK2NMf)\n\n# xLSTM\nImplementation of xLSTM in Pytorch from the paper: \"xLSTM: Extended Long Short-Term Memory\"\n\n\n\n\n# License\nMIT\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "xLSTM - Pytorch",
"version": "0.0.2",
"project_urls": {
"Documentation": "https://github.com/kyegomez/xLSTM",
"Homepage": "https://github.com/kyegomez/xLSTM",
"Repository": "https://github.com/kyegomez/xLSTM"
},
"split_keywords": [
"artificial intelligence",
" deep learning",
" optimizers",
" prompt engineering"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "1971fbd0ec44356768ca3d60c1cbb9286006cd5f4e3298072476684cf5e3eea1",
"md5": "20b918fd69accca2b52ed10d39164479",
"sha256": "c2376117b16db09bfdd49889ce84fd1e04d84ed712c55f52ec5c49f980fb2b71"
},
"downloads": -1,
"filename": "xlstm_torch-0.0.2-py3-none-any.whl",
"has_sig": false,
"md5_digest": "20b918fd69accca2b52ed10d39164479",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": "<4.0,>=3.6",
"size": 3501,
"upload_time": "2024-05-08T15:33:53",
"upload_time_iso_8601": "2024-05-08T15:33:53.309069Z",
"url": "https://files.pythonhosted.org/packages/19/71/fbd0ec44356768ca3d60c1cbb9286006cd5f4e3298072476684cf5e3eea1/xlstm_torch-0.0.2-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "b010584abbf5f15f2302aeda5faaaeb54253f96074e5b56af196076502a98a5c",
"md5": "6f95238c5f2d59529106e539e43e5cac",
"sha256": "840c149a284e407309ba518390e326364444dc0fa9ab74164ab598c6db450d95"
},
"downloads": -1,
"filename": "xlstm_torch-0.0.2.tar.gz",
"has_sig": false,
"md5_digest": "6f95238c5f2d59529106e539e43e5cac",
"packagetype": "sdist",
"python_version": "source",
"requires_python": "<4.0,>=3.6",
"size": 3569,
"upload_time": "2024-05-08T15:33:54",
"upload_time_iso_8601": "2024-05-08T15:33:54.659535Z",
"url": "https://files.pythonhosted.org/packages/b0/10/584abbf5f15f2302aeda5faaaeb54253f96074e5b56af196076502a98a5c/xlstm_torch-0.0.2.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-05-08 15:33:54",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "kyegomez",
"github_project": "xLSTM",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"requirements": [],
"lcname": "xlstm-torch"
}