xlsx-evaluate


Namexlsx-evaluate JSON
Version 0.5.0 PyPI version JSON
download
home_pagehttps://github.com/devind-team/xlsx_evaluate
SummaryCalculate XLSX formulas
upload_time2023-04-12 11:15:39
maintainer
docs_urlNone
authorVictor
requires_python>=3.9
licenseMIT
keywords openpyxlsx xlsx formulas evaluate
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Calculate XLSX formulas

[![CI](https://github.com/devind-team/xlsx_evaluate/workflows/Release/badge.svg)](https://github.com/devind-team/devind-django-dictionaries/actions)
[![Coverage Status](https://coveralls.io/repos/github/devind-team/xlsx_evaluate/badge.svg?branch=main)](https://coveralls.io/github/devind-team/devind-django-dictionaries?branch=main)
[![PyPI version](https://badge.fury.io/py/xlsx-evaluate.svg)](https://badge.fury.io/py/xlsx_evaluate)
[![License: MIT](https://img.shields.io/badge/License-MIT-success.svg)](https://opensource.org/licenses/MIT)

**xlsx_evaluate** - python library to convert excel functions in python code without the need for Excel itself within the scope of supported features.

This library is fork [xlcalculator](https://github.com/bradbase/xlcalculator). Use this library.

# Summary

- [Currently supports](docs/support.rst)
- [Supported Functions](docs/support_functions.rst)
- [Adding/Registering Excel Functions](docs/support_functions.rst)
- [Excel number precision](docs/number_precision.rst)
- [Test](docs/test.rst)

# Installation

```shell
# pip
pip install xlsx-evaluate
# poetry
poetry add xlsx-evaluate
```


# Example

```python
input_dict = {
    'B4': 0.95,
    'B2': 1000,
    "B19": 0.001,
    'B20': 4,
    'B22': 1,
    'B23': 2,
    'B24': 3,
    'B25': '=B2*B4',
    'B26': 5,
    'B27': 6,
    'B28': '=B19 * B20 * B22',
    'C22': '=SUM(B22:B28)',
    "D1": "abc",
    "D2": "bca",
    "D3": "=CONCATENATE(D1, D2)",
  }

from xlsx_evaluate import ModelCompiler
from xlsx_evaluate import Evaluator

compiler = ModelCompiler()
my_model = compiler.read_and_parse_dict(input_dict)
evaluator = Evaluator(my_model)

for formula in my_model.formulae:
    print(f'Formula {formula} evaluates to {evaluator.evaluate(formula)}')

# cells need a sheet and Sheet1 is default.
evaluator.set_cell_value('Sheet1!B22', 100)
print('Formula B28 now evaluates to', evaluator.evaluate('Sheet1!B28'))
print('Formula C22 now evaluates to', evaluator.evaluate('Sheet1!C22'))
print('Formula D3 now evaluates to', evaluator.evaluate("Sheet1!D3"))
```

# TODO

- Do not treat ranges as a granular AST node it instead as an operation ":" of
  two cell references to create the range. That will make implementing
  features like ``A1:OFFSET(...)`` easy to implement.

- Support for alternative range evaluation: by ref (pointer), by expr (lazy
  eval) and current eval mode.

    * Pointers would allow easy implementations of functions like OFFSET().

    * Lazy evals will allow efficient implementation of IF() since execution
      of true and false expressions can be delayed until it is decided which
      expression is needed.

- Implement array functions. It is really not that hard once a proper
  RangeData class has been implemented on which one can easily act with scalar
  functions.

- Improve testing

- Refactor model and evaluator to use pass-by-object-reference for values of
  cells which then get "used"/referenced by ranges, defined names and formulas

- Handle multi-file addresses

- Improve integration with pyopenxl for reading and writing files [example of
  problem space](https://stackoverflow.com/questions/40248564/pre-calculate-excel-formulas-when-exporting-data-with-python)


            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/devind-team/xlsx_evaluate",
    "name": "xlsx-evaluate",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.9",
    "maintainer_email": "",
    "keywords": "openpyxlsx,xlsx,formulas,evaluate",
    "author": "Victor",
    "author_email": "lyferov@yandex.ru",
    "download_url": "https://files.pythonhosted.org/packages/7c/b0/194fe96f3b962c335ef183548cd00e68c4827fc87bf93d67432aec389d4e/xlsx_evaluate-0.5.0.tar.gz",
    "platform": null,
    "description": "# Calculate XLSX formulas\n\n[![CI](https://github.com/devind-team/xlsx_evaluate/workflows/Release/badge.svg)](https://github.com/devind-team/devind-django-dictionaries/actions)\n[![Coverage Status](https://coveralls.io/repos/github/devind-team/xlsx_evaluate/badge.svg?branch=main)](https://coveralls.io/github/devind-team/devind-django-dictionaries?branch=main)\n[![PyPI version](https://badge.fury.io/py/xlsx-evaluate.svg)](https://badge.fury.io/py/xlsx_evaluate)\n[![License: MIT](https://img.shields.io/badge/License-MIT-success.svg)](https://opensource.org/licenses/MIT)\n\n**xlsx_evaluate** - python library to convert excel functions in python code without the need for Excel itself within the scope of supported features.\n\nThis library is fork [xlcalculator](https://github.com/bradbase/xlcalculator). Use this library.\n\n# Summary\n\n- [Currently supports](docs/support.rst)\n- [Supported Functions](docs/support_functions.rst)\n- [Adding/Registering Excel Functions](docs/support_functions.rst)\n- [Excel number precision](docs/number_precision.rst)\n- [Test](docs/test.rst)\n\n# Installation\n\n```shell\n# pip\npip install xlsx-evaluate\n# poetry\npoetry add xlsx-evaluate\n```\n\n\n# Example\n\n```python\ninput_dict = {\n    'B4': 0.95,\n    'B2': 1000,\n    \"B19\": 0.001,\n    'B20': 4,\n    'B22': 1,\n    'B23': 2,\n    'B24': 3,\n    'B25': '=B2*B4',\n    'B26': 5,\n    'B27': 6,\n    'B28': '=B19 * B20 * B22',\n    'C22': '=SUM(B22:B28)',\n    \"D1\": \"abc\",\n    \"D2\": \"bca\",\n    \"D3\": \"=CONCATENATE(D1, D2)\",\n  }\n\nfrom xlsx_evaluate import ModelCompiler\nfrom xlsx_evaluate import Evaluator\n\ncompiler = ModelCompiler()\nmy_model = compiler.read_and_parse_dict(input_dict)\nevaluator = Evaluator(my_model)\n\nfor formula in my_model.formulae:\n    print(f'Formula {formula} evaluates to {evaluator.evaluate(formula)}')\n\n# cells need a sheet and Sheet1 is default.\nevaluator.set_cell_value('Sheet1!B22', 100)\nprint('Formula B28 now evaluates to', evaluator.evaluate('Sheet1!B28'))\nprint('Formula C22 now evaluates to', evaluator.evaluate('Sheet1!C22'))\nprint('Formula D3 now evaluates to', evaluator.evaluate(\"Sheet1!D3\"))\n```\n\n# TODO\n\n- Do not treat ranges as a granular AST node it instead as an operation \":\" of\n  two cell references to create the range. That will make implementing\n  features like ``A1:OFFSET(...)`` easy to implement.\n\n- Support for alternative range evaluation: by ref (pointer), by expr (lazy\n  eval) and current eval mode.\n\n    * Pointers would allow easy implementations of functions like OFFSET().\n\n    * Lazy evals will allow efficient implementation of IF() since execution\n      of true and false expressions can be delayed until it is decided which\n      expression is needed.\n\n- Implement array functions. It is really not that hard once a proper\n  RangeData class has been implemented on which one can easily act with scalar\n  functions.\n\n- Improve testing\n\n- Refactor model and evaluator to use pass-by-object-reference for values of\n  cells which then get \"used\"/referenced by ranges, defined names and formulas\n\n- Handle multi-file addresses\n\n- Improve integration with pyopenxl for reading and writing files [example of\n  problem space](https://stackoverflow.com/questions/40248564/pre-calculate-excel-formulas-when-exporting-data-with-python)\n\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Calculate XLSX formulas",
    "version": "0.5.0",
    "split_keywords": [
        "openpyxlsx",
        "xlsx",
        "formulas",
        "evaluate"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "fea0b6f384a5e0cc3f43f0439c7bc46535d9a11c0ba09b6a051f4e4b6d40f3ad",
                "md5": "28fbf2381409d4e4321232ece758da05",
                "sha256": "a327f7ac653f2436e2eb4119aaf9fe8dc75a3820ffa458d67314715a0acb0b83"
            },
            "downloads": -1,
            "filename": "xlsx_evaluate-0.5.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "28fbf2381409d4e4321232ece758da05",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.9",
            "size": 48220,
            "upload_time": "2023-04-12T11:15:36",
            "upload_time_iso_8601": "2023-04-12T11:15:36.903039Z",
            "url": "https://files.pythonhosted.org/packages/fe/a0/b6f384a5e0cc3f43f0439c7bc46535d9a11c0ba09b6a051f4e4b6d40f3ad/xlsx_evaluate-0.5.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "7cb0194fe96f3b962c335ef183548cd00e68c4827fc87bf93d67432aec389d4e",
                "md5": "b446cb58630554b078c45a9d796be3c7",
                "sha256": "29a7cbd6e5bea0014678d7ec2e29581715fdb6ef7ecb9e27a4b8523da7abfdf1"
            },
            "downloads": -1,
            "filename": "xlsx_evaluate-0.5.0.tar.gz",
            "has_sig": false,
            "md5_digest": "b446cb58630554b078c45a9d796be3c7",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.9",
            "size": 40957,
            "upload_time": "2023-04-12T11:15:39",
            "upload_time_iso_8601": "2023-04-12T11:15:39.476309Z",
            "url": "https://files.pythonhosted.org/packages/7c/b0/194fe96f3b962c335ef183548cd00e68c4827fc87bf93d67432aec389d4e/xlsx_evaluate-0.5.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-04-12 11:15:39",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "github_user": "devind-team",
    "github_project": "xlsx_evaluate",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "xlsx-evaluate"
}
        
Elapsed time: 1.08152s