xmacis2py


Namexmacis2py JSON
Version 1.1 PyPI version JSON
download
home_pageNone
SummaryACIS2 Data Analysis and Graphical Generation
upload_time2025-03-10 07:13:56
maintainerNone
docs_urlNone
authorEric J Drewitz, USDA/USFS
requires_python>=3.10
licenseNone
keywords meteorology science data-analysis weather forecasting
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            ![image](https://github.com/user-attachments/assets/fb5ecdf9-bd51-4243-be7d-92af0952bfd8) ![image](https://github.com/user-attachments/assets/da1b43c0-2b6a-4a5c-9eb4-f08b30cab42b)

<a href="https://anaconda.org/conda-forge/xmacis2py"> <img src="https://anaconda.org/conda-forge/xmacis2py/badges/version.svg" /> </a>
<a href="https://anaconda.org/conda-forge/xmacis2py"> <img src="https://anaconda.org/conda-forge/xmacis2py/badges/latest_release_date.svg" /> </a>
<a href="https://anaconda.org/conda-forge/xmacis2py"> <img src="https://anaconda.org/conda-forge/xmacis2py/badges/latest_release_relative_date.svg" /> </a>
<a href="https://anaconda.org/conda-forge/xmacis2py"> <img src="https://anaconda.org/conda-forge/xmacis2py/badges/platforms.svg" /> </a>
<a href="https://anaconda.org/conda-forge/xmacis2py"> <img src="https://anaconda.org/conda-forge/xmacis2py/badges/license.svg" /> </a>
<a href="https://anaconda.org/conda-forge/xmacis2py"> <img src="https://anaconda.org/conda-forge/xmacis2py/badges/downloads.svg" /> </a>


# xmACIS2Py
**Creating xmACIS2 Summary Graphics in Python**

### Jupyter Lab Tutorials

1) [Creating 30 and 90 Day Temperature and Precipitation Summaries for Riverside, CA Municipal Airport (KRAL)](https://github.com/edrewitz/xmACIS2Py-Jupyter-Lab-Tutorials/blob/main/Tutorials/KRAL.ipynb)
2) [Creating Summaries With Custom Dates Nov 1st - Nov 30th 2024 for Saint Paul, AK (PASN)](https://github.com/edrewitz/xmACIS2Py-Jupyter-Lab-Tutorials/blob/main/Tutorials/PASN.ipynb)

### Table Of Contents

1) [plot_temperature_summary(station, product_type)](#plot_temperature_summarystation-product_type)
2) [plot_precipitation_summary(station, product_type)](#plot_precipitation_summarystation-product_type)
3) [References](#references)


#### plot_temperature_summary(station, product_type)

This function plots a graphic showing the Temperature Summary for a given station for a given time period. 

Required Arguments:

1) station (String) - The identifier of the ACIS2 station. 
2) product_type (String or Integer) - The type of product. 'Past 7 Days' as a string or enter 7 for the same result. 
   A value of 'custom' or 'Custom' will result in the user entering a custom start/stop date. 

Optional Arguments:
1) start_date (String) - Default=None. Enter the start date as a string (i.e. year-month-day/2025-02-22)
2) end_date (String) - Default=None. Enter the end date as a string (i.e. year-month-day/2025-02-22)

#### plot_precipitation_summary(station, product_type)

This function plots a graphic showing the Precipitation Summary for a given station for a given time period. 

Required Arguments:

1) station (String) - The identifier of the ACIS2 station. 
2) product_type (String or Integer) - The type of product. 'Past 7 Days' as a string or enter 7 for the same result. 
   A value of 'custom' or 'Custom' will result in the user entering a custom start/stop date. 

Optional Arguments:
1) start_date (String) - Default=None. Enter the start date as a string (i.e. year-month-day/2025-02-22)
2) end_date (String) - Default=None. Enter the end date as a string (i.e. year-month-day/2025-02-22)


#### References


1) xmACIS2: https://www.rcc-acis.org/docs_webservices.html 

2) MetPy: May, R. M., Goebbert, K. H., Thielen, J. E., Leeman, J. R., Camron, M. D., Bruick, Z., Bruning, E. C., Manser, R. P., Arms, S. C., and Marsh, P. T., 2022: MetPy: A Meteorological Python Library for Data Analysis and Visualization. Bull. Amer. Meteor. Soc., 103, E2273-E2284, https://doi.org/10.1175/BAMS-D-21-0125.1.

3) NumPy: Harris, C.R., Millman, K.J., van der Walt, S.J. et al. Array programming with NumPy. Nature 585, 357–362 (2020). DOI: 10.1038/s41586-020-2649-2. (Publisher link).

4) Pandas:
    author       = {The pandas development team},
    title        = {pandas-dev/pandas: Pandas},
    publisher    = {Zenodo},
    version      = {latest},
    doi          = {10.5281/zenodo.3509134},
    url          = {https://doi.org/10.5281/zenodo.3509134}
}

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "xmacis2py",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.10",
    "maintainer_email": null,
    "keywords": "meteorology, science, data-analysis, weather, forecasting",
    "author": "Eric J Drewitz, USDA/USFS",
    "author_email": null,
    "download_url": "https://files.pythonhosted.org/packages/f4/b9/d58a86898a02a66f064b09c27a367ec3a66f9fcd7a22daba21f077038a51/xmacis2py-1.1.tar.gz",
    "platform": null,
    "description": "![image](https://github.com/user-attachments/assets/fb5ecdf9-bd51-4243-be7d-92af0952bfd8) ![image](https://github.com/user-attachments/assets/da1b43c0-2b6a-4a5c-9eb4-f08b30cab42b)\r\n\r\n<a href=\"https://anaconda.org/conda-forge/xmacis2py\"> <img src=\"https://anaconda.org/conda-forge/xmacis2py/badges/version.svg\" /> </a>\r\n<a href=\"https://anaconda.org/conda-forge/xmacis2py\"> <img src=\"https://anaconda.org/conda-forge/xmacis2py/badges/latest_release_date.svg\" /> </a>\r\n<a href=\"https://anaconda.org/conda-forge/xmacis2py\"> <img src=\"https://anaconda.org/conda-forge/xmacis2py/badges/latest_release_relative_date.svg\" /> </a>\r\n<a href=\"https://anaconda.org/conda-forge/xmacis2py\"> <img src=\"https://anaconda.org/conda-forge/xmacis2py/badges/platforms.svg\" /> </a>\r\n<a href=\"https://anaconda.org/conda-forge/xmacis2py\"> <img src=\"https://anaconda.org/conda-forge/xmacis2py/badges/license.svg\" /> </a>\r\n<a href=\"https://anaconda.org/conda-forge/xmacis2py\"> <img src=\"https://anaconda.org/conda-forge/xmacis2py/badges/downloads.svg\" /> </a>\r\n\r\n\r\n# xmACIS2Py\r\n**Creating xmACIS2 Summary Graphics in Python**\r\n\r\n### Jupyter Lab Tutorials\r\n\r\n1) [Creating 30 and 90 Day Temperature and Precipitation Summaries for Riverside, CA Municipal Airport (KRAL)](https://github.com/edrewitz/xmACIS2Py-Jupyter-Lab-Tutorials/blob/main/Tutorials/KRAL.ipynb)\r\n2) [Creating Summaries With Custom Dates Nov 1st - Nov 30th 2024 for Saint Paul, AK (PASN)](https://github.com/edrewitz/xmACIS2Py-Jupyter-Lab-Tutorials/blob/main/Tutorials/PASN.ipynb)\r\n\r\n### Table Of Contents\r\n\r\n1) [plot_temperature_summary(station, product_type)](#plot_temperature_summarystation-product_type)\r\n2) [plot_precipitation_summary(station, product_type)](#plot_precipitation_summarystation-product_type)\r\n3) [References](#references)\r\n\r\n\r\n#### plot_temperature_summary(station, product_type)\r\n\r\nThis function plots a graphic showing the Temperature Summary for a given station for a given time period. \r\n\r\nRequired Arguments:\r\n\r\n1) station (String) - The identifier of the ACIS2 station. \r\n2) product_type (String or Integer) - The type of product. 'Past 7 Days' as a string or enter 7 for the same result. \r\n   A value of 'custom' or 'Custom' will result in the user entering a custom start/stop date. \r\n\r\nOptional Arguments:\r\n1) start_date (String) - Default=None. Enter the start date as a string (i.e. year-month-day/2025-02-22)\r\n2) end_date (String) - Default=None. Enter the end date as a string (i.e. year-month-day/2025-02-22)\r\n\r\n#### plot_precipitation_summary(station, product_type)\r\n\r\nThis function plots a graphic showing the Precipitation Summary for a given station for a given time period. \r\n\r\nRequired Arguments:\r\n\r\n1) station (String) - The identifier of the ACIS2 station. \r\n2) product_type (String or Integer) - The type of product. 'Past 7 Days' as a string or enter 7 for the same result. \r\n   A value of 'custom' or 'Custom' will result in the user entering a custom start/stop date. \r\n\r\nOptional Arguments:\r\n1) start_date (String) - Default=None. Enter the start date as a string (i.e. year-month-day/2025-02-22)\r\n2) end_date (String) - Default=None. Enter the end date as a string (i.e. year-month-day/2025-02-22)\r\n\r\n\r\n#### References\r\n\r\n\r\n1) xmACIS2: https://www.rcc-acis.org/docs_webservices.html \r\n\r\n2) MetPy: May, R. M., Goebbert, K. H., Thielen, J. E., Leeman, J. R., Camron, M. D., Bruick, Z., Bruning, E. C., Manser, R. P., Arms, S. C., and Marsh, P. T., 2022: MetPy: A Meteorological Python Library for Data Analysis and Visualization. Bull. Amer. Meteor. Soc., 103, E2273-E2284, https://doi.org/10.1175/BAMS-D-21-0125.1.\r\n\r\n3) NumPy: Harris, C.R., Millman, K.J., van der Walt, S.J. et al. Array programming with NumPy. Nature 585, 357\u2013362 (2020). DOI: 10.1038/s41586-020-2649-2. (Publisher link).\r\n\r\n4) Pandas:\r\n    author       = {The pandas development team},\r\n    title        = {pandas-dev/pandas: Pandas},\r\n    publisher    = {Zenodo},\r\n    version      = {latest},\r\n    doi          = {10.5281/zenodo.3509134},\r\n    url          = {https://doi.org/10.5281/zenodo.3509134}\r\n}\r\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "ACIS2 Data Analysis and Graphical Generation",
    "version": "1.1",
    "project_urls": null,
    "split_keywords": [
        "meteorology",
        " science",
        " data-analysis",
        " weather",
        " forecasting"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "f4b9d58a86898a02a66f064b09c27a367ec3a66f9fcd7a22daba21f077038a51",
                "md5": "6b08d65d1e59cfc3a617682533311cfc",
                "sha256": "476d428e9c1b6592fa6ab24993428582fb4aea870418529c22f82a9db1e17d3b"
            },
            "downloads": -1,
            "filename": "xmacis2py-1.1.tar.gz",
            "has_sig": false,
            "md5_digest": "6b08d65d1e59cfc3a617682533311cfc",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.10",
            "size": 10075,
            "upload_time": "2025-03-10T07:13:56",
            "upload_time_iso_8601": "2025-03-10T07:13:56.346387Z",
            "url": "https://files.pythonhosted.org/packages/f4/b9/d58a86898a02a66f064b09c27a367ec3a66f9fcd7a22daba21f077038a51/xmacis2py-1.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-03-10 07:13:56",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "xmacis2py"
}
        
Elapsed time: 0.41988s