xtiler


Namextiler JSON
Version 0.1.0 PyPI version JSON
download
home_pageNone
SummaryCoordinate system for tiling with hexagons.
upload_time2024-08-02 18:46:07
maintainerNone
docs_urlNone
authorTom Bricaud
requires_python>=3.8
licenseNone
keywords coordinate grid hexagon tiling
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Hexa-tiling
Coordinate system for tiling with hexagons.

## What does the grid look like?

![Explaining illustration](images/illustration.jpg)

## How does it work?

### Rings and angles
The grid can be viewed as accumulation of concentric **rings**.
On the image, the **origin** is labelled 0,
surrounded by the **ring #1** composed of tiles 1-6,
surrounded by the **ring #2** composed of tiles 7-18.

### Numbering
Tiles are numbered from 0, in increasing order, starting at the
**origin** (center of the grid), spiraling around the **origin**,
with the first tile of each **ring** at 0°.

### Coordinates
Polar coordinates can be used to find a tile.
Each tile has a **radius** and an **angle**.

- The **radius** is the distance to the **origin**,
corresponding to the rank of the **ring** the tile belongs to.
- The **angle**, in degrees, is measured between the direction
"noon" (or "up", "north", etc) and the position of the tile.

## The maths behind it

### Ring length (Perimeter)
Let the ring length be $P$ and its rank $n$.

$$P(0) = 1$$

$$P(1) = 6$$

$$\forall n > 1, \quad P(n) = 2P(n-1)$$

$$\forall n > 0, \quad P(n) = 6 * 2^{n-1}$$

### Grid size (Area)
Let the number of tiles for a grid with $n$ rings be $A$.

$$A(n) = \sum^{n}_{i = 0}{P(i)}$$

$$= 1 + \sum^{n}_{i = 1}{6 * 2^{i-1}}$$

$$= 1 + 6 * \sum^{n-1}_{i = 0}{2^{i}}$$

$$= 1 + 6 * (2^n - 1)$$

$$= 6 * 2^n - 5$$

### Number from coordinates
Let the number of a tile be $X$, its radius $n$ and its angle $\alpha$.

$$X(0, \alpha) = 0$$

$$\forall n > 0, \quad  X(n, \alpha) = A(n - 1) + \frac{\alpha}{360}P(n)$$

$$= 6 * 2^{n-1} - 5 + \frac{\alpha}{360}*6 * 2^{n-1}$$

$$= 6 * 2^{n-1}(1 + \frac{\alpha}{360}) -5$$

### Radius
To find the radius $n$ given the number $X$:

$$X = 0 \Leftrightarrow n = 0$$

$$0 \le \alpha < 360$$

$$\implies \forall n > 0, \quad X(n, 0) \quad \le \quad X(n,\alpha) \quad < \quad X(n, 360)$$

$$\implies \forall n > 0, \quad A(n - 1) + \frac{0}{360}P(n) \quad \le \quad X \quad < \quad A(n - 1) + \frac{360}{360}P(n)$$

$$\implies \forall n > 0, \quad A(n - 1) \quad \le \quad X \quad < \quad A(n - 1) + P(n) = A(n)$$

$$\implies \forall n > 0, \quad 6 * 2^{n-1} - 5 \quad \le \quad X \quad < \quad 6 * 2^n - 5$$

$$\implies \forall n > 0, \quad 2^{n-1} \quad \le \quad \frac{X + 5}{6} \quad < \quad 2^n$$

$$\implies \forall n > 0, \quad n-1 \quad \le \quad \log _2(\frac{X + 5}{6}) \quad < \quad n$$

$$\implies \forall n > 0, \quad n = \lfloor \log _2(\frac{X + 5}{6}) \rfloor + 1$$

### Angle
Tile 0 has no angle.

$$\forall n > 0, \quad X(n, \alpha) = 6 * 2^{n-1}(1 + \frac{\alpha}{360}) -5$$

$$X + 5 = 6 * 2^{n-1}(1 + \frac{\alpha}{360})$$

$$\frac{X + 5}{6 * 2^{n-1}} = 1 + \frac{\alpha}{360}$$

$$360(\frac{X + 5}{6 * 2^{n-1}} - 1) = \alpha$$

$$360(\frac{X + 5}{6 * 2^{\lfloor \log _2(\frac{X + 5}{6}) \rfloor + 1-1}} - 1) = \alpha$$

$$360(\frac{X + 5}{6 * 2^{\lfloor \log _2(\frac{X + 5}{6}) \rfloor }} - 1) = \alpha$$

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "xtiler",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.8",
    "maintainer_email": null,
    "keywords": "coordinate, grid, hexagon, tiling",
    "author": "Tom Bricaud",
    "author_email": null,
    "download_url": "https://files.pythonhosted.org/packages/8d/47/2b1b41f4e724eea0582d8782a9eebaa37ab90ca240764bd801859f98f26c/xtiler-0.1.0.tar.gz",
    "platform": null,
    "description": "# Hexa-tiling\nCoordinate system for tiling with hexagons.\n\n## What does the grid look like?\n\n![Explaining illustration](images/illustration.jpg)\n\n## How does it work?\n\n### Rings and angles\nThe grid can be viewed as accumulation of concentric **rings**.\nOn the image, the **origin** is labelled 0,\nsurrounded by the **ring #1** composed of tiles 1-6,\nsurrounded by the **ring #2** composed of tiles 7-18.\n\n### Numbering\nTiles are numbered from 0, in increasing order, starting at the\n**origin** (center of the grid), spiraling around the **origin**,\nwith the first tile of each **ring** at 0\u00b0.\n\n### Coordinates\nPolar coordinates can be used to find a tile.\nEach tile has a **radius** and an **angle**.\n\n- The **radius** is the distance to the **origin**,\ncorresponding to the rank of the **ring** the tile belongs to.\n- The **angle**, in degrees, is measured between the direction\n\"noon\" (or \"up\", \"north\", etc) and the position of the tile.\n\n## The maths behind it\n\n### Ring length (Perimeter)\nLet the ring length be $P$ and its rank $n$.\n\n$$P(0) = 1$$\n\n$$P(1) = 6$$\n\n$$\\forall n > 1, \\quad P(n) = 2P(n-1)$$\n\n$$\\forall n > 0, \\quad P(n) = 6 * 2^{n-1}$$\n\n### Grid size (Area)\nLet the number of tiles for a grid with $n$ rings be $A$.\n\n$$A(n) = \\sum^{n}_{i = 0}{P(i)}$$\n\n$$= 1 + \\sum^{n}_{i = 1}{6 * 2^{i-1}}$$\n\n$$= 1 + 6 * \\sum^{n-1}_{i = 0}{2^{i}}$$\n\n$$= 1 + 6 * (2^n - 1)$$\n\n$$= 6 * 2^n - 5$$\n\n### Number from coordinates\nLet the number of a tile be $X$, its radius $n$ and its angle $\\alpha$.\n\n$$X(0, \\alpha) = 0$$\n\n$$\\forall n > 0, \\quad  X(n, \\alpha) = A(n - 1) + \\frac{\\alpha}{360}P(n)$$\n\n$$= 6 * 2^{n-1} - 5 + \\frac{\\alpha}{360}*6 * 2^{n-1}$$\n\n$$= 6 * 2^{n-1}(1 + \\frac{\\alpha}{360}) -5$$\n\n### Radius\nTo find the radius $n$ given the number $X$:\n\n$$X = 0 \\Leftrightarrow n = 0$$\n\n$$0 \\le \\alpha < 360$$\n\n$$\\implies \\forall n > 0, \\quad X(n, 0) \\quad \\le \\quad X(n,\\alpha) \\quad < \\quad X(n, 360)$$\n\n$$\\implies \\forall n > 0, \\quad A(n - 1) + \\frac{0}{360}P(n) \\quad \\le \\quad X \\quad < \\quad A(n - 1) + \\frac{360}{360}P(n)$$\n\n$$\\implies \\forall n > 0, \\quad A(n - 1) \\quad \\le \\quad X \\quad < \\quad A(n - 1) + P(n) = A(n)$$\n\n$$\\implies \\forall n > 0, \\quad 6 * 2^{n-1} - 5 \\quad \\le \\quad X \\quad < \\quad 6 * 2^n - 5$$\n\n$$\\implies \\forall n > 0, \\quad 2^{n-1} \\quad \\le \\quad \\frac{X + 5}{6} \\quad < \\quad 2^n$$\n\n$$\\implies \\forall n > 0, \\quad n-1 \\quad \\le \\quad \\log _2(\\frac{X + 5}{6}) \\quad < \\quad n$$\n\n$$\\implies \\forall n > 0, \\quad n = \\lfloor \\log _2(\\frac{X + 5}{6}) \\rfloor + 1$$\n\n### Angle\nTile 0 has no angle.\n\n$$\\forall n > 0, \\quad X(n, \\alpha) = 6 * 2^{n-1}(1 + \\frac{\\alpha}{360}) -5$$\n\n$$X + 5 = 6 * 2^{n-1}(1 + \\frac{\\alpha}{360})$$\n\n$$\\frac{X + 5}{6 * 2^{n-1}} = 1 + \\frac{\\alpha}{360}$$\n\n$$360(\\frac{X + 5}{6 * 2^{n-1}} - 1) = \\alpha$$\n\n$$360(\\frac{X + 5}{6 * 2^{\\lfloor \\log _2(\\frac{X + 5}{6}) \\rfloor + 1-1}} - 1) = \\alpha$$\n\n$$360(\\frac{X + 5}{6 * 2^{\\lfloor \\log _2(\\frac{X + 5}{6}) \\rfloor }} - 1) = \\alpha$$\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "Coordinate system for tiling with hexagons.",
    "version": "0.1.0",
    "project_urls": {
        "Documentation": "https://github.com/LordPatate/hexa-tiling#readme",
        "Issues": "https://github.com/LordPatate/hexa-tiling/issues",
        "Source": "https://github.com/LordPatate/hexa-tiling"
    },
    "split_keywords": [
        "coordinate",
        " grid",
        " hexagon",
        " tiling"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "22b30b3d397cef4a36c709d4c6a628b6ec276976a5df62342f28346a33e95885",
                "md5": "75f6e83120cc1655d2bdc0b3036df2a8",
                "sha256": "843e94f2ef06a41026e6f161e451b1a57a9ad3fa2d371d331cc662a113178bcc"
            },
            "downloads": -1,
            "filename": "xtiler-0.1.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "75f6e83120cc1655d2bdc0b3036df2a8",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.8",
            "size": 3685,
            "upload_time": "2024-08-02T18:46:05",
            "upload_time_iso_8601": "2024-08-02T18:46:05.429536Z",
            "url": "https://files.pythonhosted.org/packages/22/b3/0b3d397cef4a36c709d4c6a628b6ec276976a5df62342f28346a33e95885/xtiler-0.1.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "8d472b1b41f4e724eea0582d8782a9eebaa37ab90ca240764bd801859f98f26c",
                "md5": "80f7ed9237b1cc5b5d6de4db74ca1de3",
                "sha256": "74d883180f6cd830b4ae82238cbc0585f92d473037a8f9e783ac37cc783c68e9"
            },
            "downloads": -1,
            "filename": "xtiler-0.1.0.tar.gz",
            "has_sig": false,
            "md5_digest": "80f7ed9237b1cc5b5d6de4db74ca1de3",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8",
            "size": 6614,
            "upload_time": "2024-08-02T18:46:07",
            "upload_time_iso_8601": "2024-08-02T18:46:07.431655Z",
            "url": "https://files.pythonhosted.org/packages/8d/47/2b1b41f4e724eea0582d8782a9eebaa37ab90ca240764bd801859f98f26c/xtiler-0.1.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-08-02 18:46:07",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "LordPatate",
    "github_project": "hexa-tiling#readme",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "xtiler"
}
        
Elapsed time: 1.17068s