Name | xvec JSON |
Version |
0.3.1
JSON |
| download |
home_page | None |
Summary | Vector data cubes for Xarray |
upload_time | 2025-01-03 19:13:02 |
maintainer | Xvec contributors |
docs_url | None |
author | None |
requires_python | >=3.9 |
license | MIT |
keywords |
gis
cartography
pandas
shapely
|
VCS |
 |
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
# Vector data cubes for Xarray
> Where raster data cubes refer to data cubes with raster (x- and y-, or lon- and lat-) dimensions, vector data cubes are n-D arrays that have (at least) a single spatial dimension that maps to a set of (2-D) vector geometries. ([Edzer Pebesma](https://r-spatial.org/r/2022/09/12/vdc.html))
Xvec combines [Xarray](http://xarray.pydata.org) n-D arrays and [shapely 2](https://shapely.readthedocs.io/en/latest/) planar vector geometries to create a support for vector data cubes in Python. See [this post](https://r-spatial.org/r/2022/09/12/vdc.html) by Edzer Pebesma on an introduction of the concept or the introduction of their implementation in Xvec in our [documentation](https://xvec.readthedocs.io/en/latest/intro.html).
## Project status
The project is in the early stage of development and its API may still change.
## Installing
You can install Xvec from PyPI using `pip` or from conda-forge using `mamba` or `conda`:
```sh
pip install xvec
```
Or (recommended):
```sh
mamba install xvec -c conda-forge
```
### Development version
The development version can be installed from GitHub.
```sh
pip install git+https://github.com/xarray-contrib/xvec.git
```
We recommend installing its dependencies using `mamba` or `conda` before.
```sh
mamba install xarray shapely pyproj -c conda-forge
```
Raw data
{
"_id": null,
"home_page": null,
"name": "xvec",
"maintainer": "Xvec contributors",
"docs_url": null,
"requires_python": ">=3.9",
"maintainer_email": null,
"keywords": "GIS, cartography, pandas, shapely",
"author": null,
"author_email": "Martin Fleischmann <martin@martinfleischmann.net>, Beno\u00eet Bovy <benbovy@gmail.com>",
"download_url": "https://files.pythonhosted.org/packages/c7/ca/714bd7565e850fe330d869fa2df0c0b62af9c18f0db85c93de2300e94078/xvec-0.3.1.tar.gz",
"platform": null,
"description": "# Vector data cubes for Xarray\n\n> Where raster data cubes refer to data cubes with raster (x- and y-, or lon- and lat-) dimensions, vector data cubes are n-D arrays that have (at least) a single spatial dimension that maps to a set of (2-D) vector geometries. ([Edzer Pebesma](https://r-spatial.org/r/2022/09/12/vdc.html))\n\nXvec combines [Xarray](http://xarray.pydata.org) n-D arrays and [shapely 2](https://shapely.readthedocs.io/en/latest/) planar vector geometries to create a support for vector data cubes in Python. See [this post](https://r-spatial.org/r/2022/09/12/vdc.html) by Edzer Pebesma on an introduction of the concept or the introduction of their implementation in Xvec in our [documentation](https://xvec.readthedocs.io/en/latest/intro.html).\n\n## Project status\n\nThe project is in the early stage of development and its API may still change.\n\n## Installing\n\nYou can install Xvec from PyPI using `pip` or from conda-forge using `mamba` or `conda`:\n\n```sh\npip install xvec\n```\n\nOr (recommended):\n\n```sh\nmamba install xvec -c conda-forge\n```\n\n### Development version\n\nThe development version can be installed from GitHub.\n\n```sh\npip install git+https://github.com/xarray-contrib/xvec.git\n```\n\nWe recommend installing its dependencies using `mamba` or `conda` before.\n\n```sh\nmamba install xarray shapely pyproj -c conda-forge\n```\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "Vector data cubes for Xarray",
"version": "0.3.1",
"project_urls": {
"Home": "https://xvec.readthedocs.io",
"Repository": "https://github.com/xarray-contrib/xvec"
},
"split_keywords": [
"gis",
" cartography",
" pandas",
" shapely"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "12ab58bac11667fa71d3096e666c27332ab3a1fc368074624805eca3088ba551",
"md5": "2833a5471896ada449ed103d92fe2fe4",
"sha256": "035b1040455628b2331298223be0a8d551cd495ba187cfd9a5a0f00d74703759"
},
"downloads": -1,
"filename": "xvec-0.3.1-py3-none-any.whl",
"has_sig": false,
"md5_digest": "2833a5471896ada449ed103d92fe2fe4",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.9",
"size": 31156,
"upload_time": "2025-01-03T19:13:00",
"upload_time_iso_8601": "2025-01-03T19:13:00.388194Z",
"url": "https://files.pythonhosted.org/packages/12/ab/58bac11667fa71d3096e666c27332ab3a1fc368074624805eca3088ba551/xvec-0.3.1-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "c7ca714bd7565e850fe330d869fa2df0c0b62af9c18f0db85c93de2300e94078",
"md5": "fcef61b737ba7e8aab7b213625627cab",
"sha256": "840110eb18868b6ee0f986208e3047005324afda635ad1bf7594f08e7cfa04e0"
},
"downloads": -1,
"filename": "xvec-0.3.1.tar.gz",
"has_sig": false,
"md5_digest": "fcef61b737ba7e8aab7b213625627cab",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.9",
"size": 275117,
"upload_time": "2025-01-03T19:13:02",
"upload_time_iso_8601": "2025-01-03T19:13:02.792685Z",
"url": "https://files.pythonhosted.org/packages/c7/ca/714bd7565e850fe330d869fa2df0c0b62af9c18f0db85c93de2300e94078/xvec-0.3.1.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-01-03 19:13:02",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "xarray-contrib",
"github_project": "xvec",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "xvec"
}