yolov10-onnx


Nameyolov10-onnx JSON
Version 0.3.0 PyPI version JSON
download
home_pageNone
SummaryRun YOLOv10 model with ONNX Runtime
upload_time2024-09-15 08:32:19
maintainerNone
docs_urlNone
authorIbai Gorordo
requires_pythonNone
licenseMIT
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # ONNX YOLOv10 Object Detection
 Python scripts performing object detection using the YOLOv10 model in ONNX.
 
![!ONNX YOLOv10 Object Detection](https://github.com/user-attachments/assets/a926d7d7-7ee5-474d-b90f-310ef874f0cb)

> [!CAUTION]
> I skipped adding the pad to the input image when resizing, which might affect the accuracy of the model if the input image has a different aspect ratio compared to the input size of the model. Always try to get an input size with a ratio close to the input images you will use.

## Requirements

 * Check the **requirements.txt** file.
 * For ONNX, if you have a NVIDIA GPU, then install the **onnxruntime-gpu**, otherwise use the **onnxruntime** library.

## Installation [![PyPI](https://img.shields.io/pypi/v/yolov10-onnx?color=2BAF2B)](https://pypi.org/project/yolov10-onnx/)

```bash
pip install yolov10-onnx
```
Or, clone this repository:
```bash
git clone https://github.com/ibaiGorordo/ONNX-YOLOv10-Object-Detection.git
cd ONNX-YOLOv10-Object-Detection
pip install -r requirements.txt
```
### ONNX Runtime
For Nvidia GPU computers:
`pip install onnxruntime-gpu`

Otherwise:
`pip install onnxruntime`

## ONNX model
- If the model file is not found in the models directory, it will be downloaded automatically from the [Official Repo](https://github.com/THU-MIG/yolov10/releases/tag/v1.1).
- **Available models**: yolov10n.onnx, yolov10s.onnx, yolov10m.onnx, yolov10b.onnx, yolov10l.onnx, yolov10x.onnx

## Original YOLOv10 model
The original YOLOv10 model can be found in this repository: https://github.com/THU-MIG/yolov10
- The License of the models is AGPL-3.0 license: https://github.com/THU-MIG/yolov10/blob/main/LICENSE

## Examples

 * **Image inference**:
 ```
 python image_object_detection.py
 ```

 * **Webcam inference**:
 ```
 python webcam_object_detection.py
 ```

 * **Video inference**: https://youtu.be/hz9PYZF4ax4
 ```
 python video_object_detection.py
 ```
![!yolov10_object_detection](https://github.com/user-attachments/assets/08872b1c-2009-4f8d-97a5-7b88f13ec887)


## References:
* YOLOv10 model: https://github.com/THU-MIG/yolov10

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "yolov10-onnx",
    "maintainer": null,
    "docs_url": null,
    "requires_python": null,
    "maintainer_email": null,
    "keywords": null,
    "author": "Ibai Gorordo",
    "author_email": null,
    "download_url": "https://files.pythonhosted.org/packages/c2/28/54f2d965dc98da37000767c0e25ddbe186c14d5a940b2738717fc6d01e2b/yolov10_onnx-0.3.0.tar.gz",
    "platform": null,
    "description": "# ONNX YOLOv10 Object Detection\r\n Python scripts performing object detection using the YOLOv10 model in ONNX.\r\n \r\n![!ONNX YOLOv10 Object Detection](https://github.com/user-attachments/assets/a926d7d7-7ee5-474d-b90f-310ef874f0cb)\r\n\r\n> [!CAUTION]\r\n> I skipped adding the pad to the input image when resizing, which might affect the accuracy of the model if the input image has a different aspect ratio compared to the input size of the model. Always try to get an input size with a ratio close to the input images you will use.\r\n\r\n## Requirements\r\n\r\n * Check the **requirements.txt** file.\r\n * For ONNX, if you have a NVIDIA GPU, then install the **onnxruntime-gpu**, otherwise use the **onnxruntime** library.\r\n\r\n## Installation [![PyPI](https://img.shields.io/pypi/v/yolov10-onnx?color=2BAF2B)](https://pypi.org/project/yolov10-onnx/)\r\n\r\n```bash\r\npip install yolov10-onnx\r\n```\r\nOr, clone this repository:\r\n```bash\r\ngit clone https://github.com/ibaiGorordo/ONNX-YOLOv10-Object-Detection.git\r\ncd ONNX-YOLOv10-Object-Detection\r\npip install -r requirements.txt\r\n```\r\n### ONNX Runtime\r\nFor Nvidia GPU computers:\r\n`pip install onnxruntime-gpu`\r\n\r\nOtherwise:\r\n`pip install onnxruntime`\r\n\r\n## ONNX model\r\n- If the model file is not found in the models directory, it will be downloaded automatically from the [Official Repo](https://github.com/THU-MIG/yolov10/releases/tag/v1.1).\r\n- **Available models**: yolov10n.onnx, yolov10s.onnx, yolov10m.onnx, yolov10b.onnx, yolov10l.onnx, yolov10x.onnx\r\n\r\n## Original YOLOv10 model\r\nThe original YOLOv10 model can be found in this repository: https://github.com/THU-MIG/yolov10\r\n- The License of the models is AGPL-3.0 license: https://github.com/THU-MIG/yolov10/blob/main/LICENSE\r\n\r\n## Examples\r\n\r\n * **Image inference**:\r\n ```\r\n python image_object_detection.py\r\n ```\r\n\r\n * **Webcam inference**:\r\n ```\r\n python webcam_object_detection.py\r\n ```\r\n\r\n * **Video inference**: https://youtu.be/hz9PYZF4ax4\r\n ```\r\n python video_object_detection.py\r\n ```\r\n![!yolov10_object_detection](https://github.com/user-attachments/assets/08872b1c-2009-4f8d-97a5-7b88f13ec887)\r\n\r\n\r\n## References:\r\n* YOLOv10 model: https://github.com/THU-MIG/yolov10\r\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Run YOLOv10 model with ONNX Runtime",
    "version": "0.3.0",
    "project_urls": {
        "Homepage": "https://github.com/ibaiGorordo/ONNX-YOLOv10-Object-Detection"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "927d79f40cb97111bb17855511ee4642e1c2879832d6b5f34c4db1a36730d1f9",
                "md5": "5f1f84428da481dfaa14ce014a010a4b",
                "sha256": "7cac319c39f9357fe40b54b5bc1f4b33b346804b47b27de26dc89e568576ad8d"
            },
            "downloads": -1,
            "filename": "yolov10_onnx-0.3.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "5f1f84428da481dfaa14ce014a010a4b",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 6411,
            "upload_time": "2024-09-15T08:32:17",
            "upload_time_iso_8601": "2024-09-15T08:32:17.891902Z",
            "url": "https://files.pythonhosted.org/packages/92/7d/79f40cb97111bb17855511ee4642e1c2879832d6b5f34c4db1a36730d1f9/yolov10_onnx-0.3.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "c22854f2d965dc98da37000767c0e25ddbe186c14d5a940b2738717fc6d01e2b",
                "md5": "1168f46f001ffb9f34d75bb0adcd450c",
                "sha256": "28bdba98494f9eb61016a3c0f98581acc5a014688a4174b3be49b76e535bd927"
            },
            "downloads": -1,
            "filename": "yolov10_onnx-0.3.0.tar.gz",
            "has_sig": false,
            "md5_digest": "1168f46f001ffb9f34d75bb0adcd450c",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 5805,
            "upload_time": "2024-09-15T08:32:19",
            "upload_time_iso_8601": "2024-09-15T08:32:19.483596Z",
            "url": "https://files.pythonhosted.org/packages/c2/28/54f2d965dc98da37000767c0e25ddbe186c14d5a940b2738717fc6d01e2b/yolov10_onnx-0.3.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-09-15 08:32:19",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "ibaiGorordo",
    "github_project": "ONNX-YOLOv10-Object-Detection",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "requirements": [],
    "lcname": "yolov10-onnx"
}
        
Elapsed time: 0.33903s