Name | yolov10-onnx JSON |
Version |
0.3.0
JSON |
| download |
home_page | None |
Summary | Run YOLOv10 model with ONNX Runtime |
upload_time | 2024-09-15 08:32:19 |
maintainer | None |
docs_url | None |
author | Ibai Gorordo |
requires_python | None |
license | MIT |
keywords |
|
VCS |
|
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
# ONNX YOLOv10 Object Detection
Python scripts performing object detection using the YOLOv10 model in ONNX.
![!ONNX YOLOv10 Object Detection](https://github.com/user-attachments/assets/a926d7d7-7ee5-474d-b90f-310ef874f0cb)
> [!CAUTION]
> I skipped adding the pad to the input image when resizing, which might affect the accuracy of the model if the input image has a different aspect ratio compared to the input size of the model. Always try to get an input size with a ratio close to the input images you will use.
## Requirements
* Check the **requirements.txt** file.
* For ONNX, if you have a NVIDIA GPU, then install the **onnxruntime-gpu**, otherwise use the **onnxruntime** library.
## Installation [![PyPI](https://img.shields.io/pypi/v/yolov10-onnx?color=2BAF2B)](https://pypi.org/project/yolov10-onnx/)
```bash
pip install yolov10-onnx
```
Or, clone this repository:
```bash
git clone https://github.com/ibaiGorordo/ONNX-YOLOv10-Object-Detection.git
cd ONNX-YOLOv10-Object-Detection
pip install -r requirements.txt
```
### ONNX Runtime
For Nvidia GPU computers:
`pip install onnxruntime-gpu`
Otherwise:
`pip install onnxruntime`
## ONNX model
- If the model file is not found in the models directory, it will be downloaded automatically from the [Official Repo](https://github.com/THU-MIG/yolov10/releases/tag/v1.1).
- **Available models**: yolov10n.onnx, yolov10s.onnx, yolov10m.onnx, yolov10b.onnx, yolov10l.onnx, yolov10x.onnx
## Original YOLOv10 model
The original YOLOv10 model can be found in this repository: https://github.com/THU-MIG/yolov10
- The License of the models is AGPL-3.0 license: https://github.com/THU-MIG/yolov10/blob/main/LICENSE
## Examples
* **Image inference**:
```
python image_object_detection.py
```
* **Webcam inference**:
```
python webcam_object_detection.py
```
* **Video inference**: https://youtu.be/hz9PYZF4ax4
```
python video_object_detection.py
```
![!yolov10_object_detection](https://github.com/user-attachments/assets/08872b1c-2009-4f8d-97a5-7b88f13ec887)
## References:
* YOLOv10 model: https://github.com/THU-MIG/yolov10
Raw data
{
"_id": null,
"home_page": null,
"name": "yolov10-onnx",
"maintainer": null,
"docs_url": null,
"requires_python": null,
"maintainer_email": null,
"keywords": null,
"author": "Ibai Gorordo",
"author_email": null,
"download_url": "https://files.pythonhosted.org/packages/c2/28/54f2d965dc98da37000767c0e25ddbe186c14d5a940b2738717fc6d01e2b/yolov10_onnx-0.3.0.tar.gz",
"platform": null,
"description": "# ONNX YOLOv10 Object Detection\r\n Python scripts performing object detection using the YOLOv10 model in ONNX.\r\n \r\n![!ONNX YOLOv10 Object Detection](https://github.com/user-attachments/assets/a926d7d7-7ee5-474d-b90f-310ef874f0cb)\r\n\r\n> [!CAUTION]\r\n> I skipped adding the pad to the input image when resizing, which might affect the accuracy of the model if the input image has a different aspect ratio compared to the input size of the model. Always try to get an input size with a ratio close to the input images you will use.\r\n\r\n## Requirements\r\n\r\n * Check the **requirements.txt** file.\r\n * For ONNX, if you have a NVIDIA GPU, then install the **onnxruntime-gpu**, otherwise use the **onnxruntime** library.\r\n\r\n## Installation [![PyPI](https://img.shields.io/pypi/v/yolov10-onnx?color=2BAF2B)](https://pypi.org/project/yolov10-onnx/)\r\n\r\n```bash\r\npip install yolov10-onnx\r\n```\r\nOr, clone this repository:\r\n```bash\r\ngit clone https://github.com/ibaiGorordo/ONNX-YOLOv10-Object-Detection.git\r\ncd ONNX-YOLOv10-Object-Detection\r\npip install -r requirements.txt\r\n```\r\n### ONNX Runtime\r\nFor Nvidia GPU computers:\r\n`pip install onnxruntime-gpu`\r\n\r\nOtherwise:\r\n`pip install onnxruntime`\r\n\r\n## ONNX model\r\n- If the model file is not found in the models directory, it will be downloaded automatically from the [Official Repo](https://github.com/THU-MIG/yolov10/releases/tag/v1.1).\r\n- **Available models**: yolov10n.onnx, yolov10s.onnx, yolov10m.onnx, yolov10b.onnx, yolov10l.onnx, yolov10x.onnx\r\n\r\n## Original YOLOv10 model\r\nThe original YOLOv10 model can be found in this repository: https://github.com/THU-MIG/yolov10\r\n- The License of the models is AGPL-3.0 license: https://github.com/THU-MIG/yolov10/blob/main/LICENSE\r\n\r\n## Examples\r\n\r\n * **Image inference**:\r\n ```\r\n python image_object_detection.py\r\n ```\r\n\r\n * **Webcam inference**:\r\n ```\r\n python webcam_object_detection.py\r\n ```\r\n\r\n * **Video inference**: https://youtu.be/hz9PYZF4ax4\r\n ```\r\n python video_object_detection.py\r\n ```\r\n![!yolov10_object_detection](https://github.com/user-attachments/assets/08872b1c-2009-4f8d-97a5-7b88f13ec887)\r\n\r\n\r\n## References:\r\n* YOLOv10 model: https://github.com/THU-MIG/yolov10\r\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "Run YOLOv10 model with ONNX Runtime",
"version": "0.3.0",
"project_urls": {
"Homepage": "https://github.com/ibaiGorordo/ONNX-YOLOv10-Object-Detection"
},
"split_keywords": [],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "927d79f40cb97111bb17855511ee4642e1c2879832d6b5f34c4db1a36730d1f9",
"md5": "5f1f84428da481dfaa14ce014a010a4b",
"sha256": "7cac319c39f9357fe40b54b5bc1f4b33b346804b47b27de26dc89e568576ad8d"
},
"downloads": -1,
"filename": "yolov10_onnx-0.3.0-py3-none-any.whl",
"has_sig": false,
"md5_digest": "5f1f84428da481dfaa14ce014a010a4b",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": null,
"size": 6411,
"upload_time": "2024-09-15T08:32:17",
"upload_time_iso_8601": "2024-09-15T08:32:17.891902Z",
"url": "https://files.pythonhosted.org/packages/92/7d/79f40cb97111bb17855511ee4642e1c2879832d6b5f34c4db1a36730d1f9/yolov10_onnx-0.3.0-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "c22854f2d965dc98da37000767c0e25ddbe186c14d5a940b2738717fc6d01e2b",
"md5": "1168f46f001ffb9f34d75bb0adcd450c",
"sha256": "28bdba98494f9eb61016a3c0f98581acc5a014688a4174b3be49b76e535bd927"
},
"downloads": -1,
"filename": "yolov10_onnx-0.3.0.tar.gz",
"has_sig": false,
"md5_digest": "1168f46f001ffb9f34d75bb0adcd450c",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 5805,
"upload_time": "2024-09-15T08:32:19",
"upload_time_iso_8601": "2024-09-15T08:32:19.483596Z",
"url": "https://files.pythonhosted.org/packages/c2/28/54f2d965dc98da37000767c0e25ddbe186c14d5a940b2738717fc6d01e2b/yolov10_onnx-0.3.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-09-15 08:32:19",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "ibaiGorordo",
"github_project": "ONNX-YOLOv10-Object-Detection",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"requirements": [],
"lcname": "yolov10-onnx"
}