# YOLOv8 to 🤗
HuggingFace utilities for Ultralytics/YOLOv8
## installation
```bash
pip install yolov8tohf
```
## push to hub
```bash
yolov8tohf --exp_dir runs/detect/train --hf_model_id HF_USERNAME/MODELNAME
```
## load from hub
```python
from yolov8tohf import YOLO
# load model
model = YOLO('fcakyon/yolov8s-test')
# set model parameters
model.overrides['conf'] = 0.25 # NMS confidence threshold
model.overrides['iou'] = 0.45 # NMS IoU threshold
model.overrides['agnostic_nms'] = False # NMS class-agnostic
model.overrides['max_det'] = 1000 # maximum number of detections per image
# set image
img = 'https://github.com/ultralytics/yolov5/raw/master/data/images/zidane.jpg'
# perform inference
model.predict(img, imgsz=640)
```
Raw data
{
"_id": null,
"home_page": "",
"name": "yolov8tohf",
"maintainer": "",
"docs_url": null,
"requires_python": ">=3.7",
"maintainer_email": "",
"keywords": "machine-learning,deep-learning,ml,vision,yolov8,object-detection,huggingface,datasets",
"author": "",
"author_email": "",
"download_url": "https://files.pythonhosted.org/packages/36/fa/92725db8740d17506a24ba857835678e5818399ecf2b754c5b2fd0fa40e9/yolov8tohf-0.0.2.tar.gz",
"platform": null,
"description": "# YOLOv8 to \ud83e\udd17\nHuggingFace utilities for Ultralytics/YOLOv8\n\n## installation\n\n```bash\npip install yolov8tohf\n```\n\n## push to hub\n\n```bash\nyolov8tohf --exp_dir runs/detect/train --hf_model_id HF_USERNAME/MODELNAME\n```\n\n## load from hub\n\n```python\nfrom yolov8tohf import YOLO\n\n# load model\nmodel = YOLO('fcakyon/yolov8s-test')\n\n# set model parameters\nmodel.overrides['conf'] = 0.25 # NMS confidence threshold\nmodel.overrides['iou'] = 0.45 # NMS IoU threshold\nmodel.overrides['agnostic_nms'] = False # NMS class-agnostic\nmodel.overrides['max_det'] = 1000 # maximum number of detections per image\n\n# set image\nimg = 'https://github.com/ultralytics/yolov5/raw/master/data/images/zidane.jpg'\n\n# perform inference\nmodel.predict(img, imgsz=640)\n```\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "Huggingface utilities for Ultralytics/YOLOv8.",
"version": "0.0.2",
"split_keywords": [
"machine-learning",
"deep-learning",
"ml",
"vision",
"yolov8",
"object-detection",
"huggingface",
"datasets"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "c518ca9f9474633e7ae18a0d1c83e49fac42b8ed8bec884f74f70d73bdab7ff0",
"md5": "dc2da7a924933590372616c5708980d7",
"sha256": "ee99fdc65367a7df65071e3d9c6bc02ba976862cfffd3f8771af4d60c37af97d"
},
"downloads": -1,
"filename": "yolov8tohf-0.0.2-py3-none-any.whl",
"has_sig": false,
"md5_digest": "dc2da7a924933590372616c5708980d7",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.7",
"size": 7505,
"upload_time": "2023-01-11T15:21:46",
"upload_time_iso_8601": "2023-01-11T15:21:46.062849Z",
"url": "https://files.pythonhosted.org/packages/c5/18/ca9f9474633e7ae18a0d1c83e49fac42b8ed8bec884f74f70d73bdab7ff0/yolov8tohf-0.0.2-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "36fa92725db8740d17506a24ba857835678e5818399ecf2b754c5b2fd0fa40e9",
"md5": "a327145f3eeac1dfe95f8855c067d9a2",
"sha256": "ad4ed9e2a453c2c95b9445e174e269705fdb4673858c79635b4a2f32e4e3210d"
},
"downloads": -1,
"filename": "yolov8tohf-0.0.2.tar.gz",
"has_sig": false,
"md5_digest": "a327145f3eeac1dfe95f8855c067d9a2",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.7",
"size": 6783,
"upload_time": "2023-01-11T15:21:47",
"upload_time_iso_8601": "2023-01-11T15:21:47.375785Z",
"url": "https://files.pythonhosted.org/packages/36/fa/92725db8740d17506a24ba857835678e5818399ecf2b754c5b2fd0fa40e9/yolov8tohf-0.0.2.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2023-01-11 15:21:47",
"github": false,
"gitlab": false,
"bitbucket": false,
"lcname": "yolov8tohf"
}