Name | youtube-qa JSON |
Version |
1.0.4
JSON |
| download |
home_page | https://github.com/jakecyr/youtube-qa |
Summary | Question answering over YouTube videos with embeddings and LLMs. |
upload_time | 2024-07-23 02:38:38 |
maintainer | None |
docs_url | None |
author | Jake Cyr |
requires_python | <3.13,>=3.9 |
license | MIT |
keywords |
|
VCS |
|
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
# YouTube Question Answer
Simple experiment for question answering on YouTube videos using embeddings and
the top n YouTube search result transcripts.
The function will take a question and optionally a YouTube search query (otherwise an LLM will auto-generate one),
will compile transcripts for each video result, generate an embedding index using the transcripts and then answer the
question using the relevant embeddings.
The function will return both a string response and a list of sources that were used for the answer.
## Installation
The package can be installed from PyPI with `pip install youtube-qa`. Make sure to set your `OPENAI_API_KEY`
environment variable before using.
## Example
```python
from youtube_qa.youtube_video_index import VideoIndexQueryResponse, YouTubeVideoIndex
video_index = YouTubeVideoIndex()
video_index.build_index(
search_term="huberman motivation",
video_results=3,
)
response: VideoIndexQueryResponse = video_index.answer_question(
question="what are the best researched supplements to help with exercise motivation",
)
print(response.answer) # The answer to the question.
print(response.sources) # Video links and other metadata.
```
You can also generate the search query given the question:
```python
from youtube_qa.youtube_video_index import VideoIndexQueryResponse, YouTubeVideoIndex
question = "what are the best researched supplements to help with exercise motivation"
video_index = YouTubeVideoIndex(
# Can optionally pass in custom embedding model and LLM here.
)
search_term = video_index.generate_search_query(question)
video_index.build_index(
search_term=search_term,
video_results=3,
)
response: VideoIndexQueryResponse = video_index.answer_question(
question=question,
)
print(response.answer) # The answer to the question.
print(response.sources) # Video links and other metadata.
```
Raw data
{
"_id": null,
"home_page": "https://github.com/jakecyr/youtube-qa",
"name": "youtube-qa",
"maintainer": null,
"docs_url": null,
"requires_python": "<3.13,>=3.9",
"maintainer_email": null,
"keywords": null,
"author": "Jake Cyr",
"author_email": "cyrjake@gmail.com",
"download_url": "https://files.pythonhosted.org/packages/1f/49/967bba775442ac8584ef1827b0372e47c89817ca897e100e53ed032c0339/youtube_qa-1.0.4.tar.gz",
"platform": null,
"description": "# YouTube Question Answer\n\nSimple experiment for question answering on YouTube videos using embeddings and\nthe top n YouTube search result transcripts.\n\nThe function will take a question and optionally a YouTube search query (otherwise an LLM will auto-generate one),\nwill compile transcripts for each video result, generate an embedding index using the transcripts and then answer the\nquestion using the relevant embeddings.\n\nThe function will return both a string response and a list of sources that were used for the answer.\n\n## Installation\n\nThe package can be installed from PyPI with `pip install youtube-qa`. Make sure to set your `OPENAI_API_KEY`\nenvironment variable before using.\n\n## Example\n\n```python\nfrom youtube_qa.youtube_video_index import VideoIndexQueryResponse, YouTubeVideoIndex\n\nvideo_index = YouTubeVideoIndex()\nvideo_index.build_index(\n search_term=\"huberman motivation\",\n video_results=3,\n)\nresponse: VideoIndexQueryResponse = video_index.answer_question(\n question=\"what are the best researched supplements to help with exercise motivation\",\n)\n\nprint(response.answer) # The answer to the question.\nprint(response.sources) # Video links and other metadata.\n```\n\nYou can also generate the search query given the question:\n\n```python\nfrom youtube_qa.youtube_video_index import VideoIndexQueryResponse, YouTubeVideoIndex\n\nquestion = \"what are the best researched supplements to help with exercise motivation\"\nvideo_index = YouTubeVideoIndex(\n # Can optionally pass in custom embedding model and LLM here.\n)\nsearch_term = video_index.generate_search_query(question)\n\nvideo_index.build_index(\n search_term=search_term,\n video_results=3,\n)\nresponse: VideoIndexQueryResponse = video_index.answer_question(\n question=question,\n)\n\nprint(response.answer) # The answer to the question.\nprint(response.sources) # Video links and other metadata.\n```\n\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "Question answering over YouTube videos with embeddings and LLMs.",
"version": "1.0.4",
"project_urls": {
"Homepage": "https://github.com/jakecyr/youtube-qa",
"Repository": "https://github.com/jakecyr/youtube-qa"
},
"split_keywords": [],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "ce2684bc14628dab9f1cdc9b82b949961ece6ff14ae9c4f7baefe1fc0b3ca3fa",
"md5": "b8f70b27f40d2b624b44de931a71487c",
"sha256": "b8f5063a41c2cde7be56053fddf03a8f84f55ade4895c7a6ff9fe42bcba6a543"
},
"downloads": -1,
"filename": "youtube_qa-1.0.4-py3-none-any.whl",
"has_sig": false,
"md5_digest": "b8f70b27f40d2b624b44de931a71487c",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": "<3.13,>=3.9",
"size": 5172,
"upload_time": "2024-07-23T02:38:37",
"upload_time_iso_8601": "2024-07-23T02:38:37.821445Z",
"url": "https://files.pythonhosted.org/packages/ce/26/84bc14628dab9f1cdc9b82b949961ece6ff14ae9c4f7baefe1fc0b3ca3fa/youtube_qa-1.0.4-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "1f49967bba775442ac8584ef1827b0372e47c89817ca897e100e53ed032c0339",
"md5": "17579d341f0cd789978ecdba9b71369b",
"sha256": "f88b2c911d28a29d68247aa0fa417ccffcaab2faa02d4ae79ce5a934df8cd4f7"
},
"downloads": -1,
"filename": "youtube_qa-1.0.4.tar.gz",
"has_sig": false,
"md5_digest": "17579d341f0cd789978ecdba9b71369b",
"packagetype": "sdist",
"python_version": "source",
"requires_python": "<3.13,>=3.9",
"size": 3937,
"upload_time": "2024-07-23T02:38:38",
"upload_time_iso_8601": "2024-07-23T02:38:38.987254Z",
"url": "https://files.pythonhosted.org/packages/1f/49/967bba775442ac8584ef1827b0372e47c89817ca897e100e53ed032c0339/youtube_qa-1.0.4.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-07-23 02:38:38",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "jakecyr",
"github_project": "youtube-qa",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"lcname": "youtube-qa"
}