# Zeblok Python SDK
Zeblok-sdk will help integrate your MLOps workflows with the Zeblok Ai-MicroCloud platform.
## Components of the Python SDK
### Auth
- API Authentication
### Resources
- Plan
- Namespace
### Managed Service
- Microservice
- Orchestration-Addons
- Ai-API
- Ai-Pipeline
- DataLake
- DataSet
# Interface
<h3> Authentication </h3>
- API Authentication: `APIAuth(app_url, api_access_key,api_access_secret)`
<h3> Plans </h3>
- Get all plans: `get_all()`
- Get a plan by id: `get_by_id(plan_id)`
- Validate a plan by id: `validate_id(plan_id)`
- Get filtered details of a plan: `get_filtered_details(plan_id, fields_req)`
<h3> Namespaces </h3>
- Get all namespaces: `get_all()`
- Get a namespace by id: `get_by_id(namespace_id)`
- Validate a namespace by id: `validate_id(namespace_id)`
<h3> MicroServices </h3>
- Get all microservices: `get_all()`
- Get a microservice by id: `get_by_id(plan_id)`
- Validate a microservice by id: `validate_id(microservice_id)`
- Spawn a microservices by
id: `spawn(display_name, microservice_id, plan_id, microservice_name, namespace_id, envs, ports, args, command)`
<h3> Orchestration-Addons </h3>
- Get all orchestrations: `get_all()`
- Get an orchestration by id: `get_by_id(orchestration_id)`
- Validate an orchestration by id: `validate_id(orchestration_id)`
- Spawn an orchestrations by
id: `spawn(orchestration_id, plan_id, namespace_id, orchestration_name, min_workers, max_workers)`
<h3> AI-APIs </h3>
- Get all AI-APIs with `deployed` state: `get_all(state=deployed)`
- Get all AI-APIs with `ready` state: `get_all(state=ready)`
- Validate an AI-API: `validate(image_name, state)`
- Create and Spawn an AI-API: `create_and_spawn(ai_api_name, model_folder_path, plan_id, namespace_id, ai_api_type)`
- Create an AI-API: `create(ai_api_name, model_folder_path, ai_api_type)`
- Spawn an AI-API: `spawn(image_name, namespace_id, plan_id)`
<h3> AI-Pipelines </h3>
- Get all AI-Pipelines with `created` state: `get_all(state=created)`
- Get all AI-Pipelines with `ready` state: `get_all(state=ready)`
- Validate an AI-Pipeline: `validate(image_name, state)`
- Create and Spawn an
AI-API: `create_and_spawn(ai_pipeline_name, ai_pipeline_folder_path, caas_plan_id, ai_pipeline_plan_id, namespace_id)`
- Create an
AI-Pipeline: `create(ai_pipeline_name, ai_pipeline_folder_path, caas_plan_id, ai_pipeline_plan_id, namespace_id)`
- Spawn an AI-Pipeline: `spawn(ai_pipeline_plan_id, namespace_id, ai_pipeline_image_name)`
<h3> DataLake </h3>
- Check if a bucket exists: `bucket_exists()`
- Check if an object exists: `object_exists(object_name)`
- Upload an object: `upload_object(local_file_pathname, object_name)`
- Download an object: `download_object(object_name, local_dir, filename)`
- Get object PreSigned URL: `get_presigned_url(object_name)`
- Upload a folder: `upload_folder(folder_path)`
<h3> DataSet </h3>
- Get all DataSets: `get_all()`
- Get Dataset information by name: `get_by_name(dataset_name)`
- Create a DataSet: `create_dataset(dataset_name, dataset_description)`
- Upload files in a DataSet: `upload_dataset(dataset_id, filepaths)`
## Usage
Checkout the detailed usage of the SDK at [Usage.md](Usage.md#usage)
# Contact Zeblok
| **Team** | **Email** |
|--------------------|--------------------|
| **Technical Team** | support@zeblok.com |
| **Sales Team** | sales@zeblok.com |
Raw data
{
"_id": null,
"home_page": null,
"name": "zeblok-sdk",
"maintainer": "Zeblok, Karan Pathak",
"docs_url": null,
"requires_python": ">=3.9",
"maintainer_email": "zeblok@zeblok.com, karan.pathak@zeblok.com",
"keywords": "zeblok, python-sdk, zeblok-sdk",
"author": "Karan Pathak",
"author_email": "karan@dataturtles.com",
"download_url": "https://files.pythonhosted.org/packages/2f/1d/b50218cc680f6a037433b86f8a9c0111c1129de9c4215efb4a9c5d8fb31d/zeblok_sdk-1.3.0.tar.gz",
"platform": null,
"description": "# Zeblok Python SDK\r\n\r\nZeblok-sdk will help integrate your MLOps workflows with the Zeblok Ai-MicroCloud platform.\r\n\r\n## Components of the Python SDK\r\n\r\n### Auth\r\n\r\n- API Authentication\r\n\r\n### Resources\r\n\r\n- Plan\r\n- Namespace\r\n\r\n### Managed Service\r\n\r\n- Microservice\r\n- Orchestration-Addons\r\n- Ai-API\r\n- Ai-Pipeline\r\n- DataLake\r\n- DataSet\r\n\r\n# Interface\r\n\r\n<h3> Authentication </h3>\r\n\r\n- API Authentication: `APIAuth(app_url, api_access_key,api_access_secret)`\r\n\r\n<h3> Plans </h3>\r\n\r\n- Get all plans: `get_all()`\r\n- Get a plan by id: `get_by_id(plan_id)`\r\n- Validate a plan by id: `validate_id(plan_id)`\r\n- Get filtered details of a plan: `get_filtered_details(plan_id, fields_req)`\r\n\r\n<h3> Namespaces </h3>\r\n\r\n- Get all namespaces: `get_all()`\r\n- Get a namespace by id: `get_by_id(namespace_id)`\r\n- Validate a namespace by id: `validate_id(namespace_id)`\r\n\r\n<h3> MicroServices </h3>\r\n\r\n- Get all microservices: `get_all()`\r\n- Get a microservice by id: `get_by_id(plan_id)`\r\n- Validate a microservice by id: `validate_id(microservice_id)`\r\n- Spawn a microservices by\r\n id: `spawn(display_name, microservice_id, plan_id, microservice_name, namespace_id, envs, ports, args, command)`\r\n\r\n<h3> Orchestration-Addons </h3>\r\n\r\n- Get all orchestrations: `get_all()`\r\n- Get an orchestration by id: `get_by_id(orchestration_id)`\r\n- Validate an orchestration by id: `validate_id(orchestration_id)`\r\n- Spawn an orchestrations by\r\n id: `spawn(orchestration_id, plan_id, namespace_id, orchestration_name, min_workers, max_workers)`\r\n\r\n<h3> AI-APIs </h3>\r\n\r\n- Get all AI-APIs with `deployed` state: `get_all(state=deployed)`\r\n- Get all AI-APIs with `ready` state: `get_all(state=ready)`\r\n- Validate an AI-API: `validate(image_name, state)`\r\n- Create and Spawn an AI-API: `create_and_spawn(ai_api_name, model_folder_path, plan_id, namespace_id, ai_api_type)`\r\n- Create an AI-API: `create(ai_api_name, model_folder_path, ai_api_type)`\r\n- Spawn an AI-API: `spawn(image_name, namespace_id, plan_id)`\r\n\r\n<h3> AI-Pipelines </h3>\r\n\r\n- Get all AI-Pipelines with `created` state: `get_all(state=created)`\r\n- Get all AI-Pipelines with `ready` state: `get_all(state=ready)`\r\n- Validate an AI-Pipeline: `validate(image_name, state)`\r\n- Create and Spawn an\r\n AI-API: `create_and_spawn(ai_pipeline_name, ai_pipeline_folder_path, caas_plan_id, ai_pipeline_plan_id, namespace_id)`\r\n- Create an\r\n AI-Pipeline: `create(ai_pipeline_name, ai_pipeline_folder_path, caas_plan_id, ai_pipeline_plan_id, namespace_id)`\r\n- Spawn an AI-Pipeline: `spawn(ai_pipeline_plan_id, namespace_id, ai_pipeline_image_name)`\r\n\r\n<h3> DataLake </h3>\r\n\r\n- Check if a bucket exists: `bucket_exists()`\r\n- Check if an object exists: `object_exists(object_name)`\r\n- Upload an object: `upload_object(local_file_pathname, object_name)`\r\n- Download an object: `download_object(object_name, local_dir, filename)`\r\n- Get object PreSigned URL: `get_presigned_url(object_name)`\r\n- Upload a folder: `upload_folder(folder_path)`\r\n\r\n<h3> DataSet </h3>\r\n\r\n- Get all DataSets: `get_all()`\r\n- Get Dataset information by name: `get_by_name(dataset_name)`\r\n- Create a DataSet: `create_dataset(dataset_name, dataset_description)`\r\n- Upload files in a DataSet: `upload_dataset(dataset_id, filepaths)`\r\n\r\n## Usage\r\n\r\nCheckout the detailed usage of the SDK at [Usage.md](Usage.md#usage)\r\n\r\n# Contact Zeblok\r\n\r\n| **Team** | **Email** |\r\n|--------------------|--------------------|\r\n| **Technical Team** | support@zeblok.com |\r\n| **Sales Team** | sales@zeblok.com |\r\n\r\n",
"bugtrack_url": null,
"license": null,
"summary": "Zeblok Python SDK",
"version": "1.3.0",
"project_urls": null,
"split_keywords": [
"zeblok",
" python-sdk",
" zeblok-sdk"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "3e511c73da118faa4fc91f5641d9e00719a18fba11869127502be32bb31dad2d",
"md5": "b49036177d2457161da7346e0013cfd3",
"sha256": "3cf189f0caf5f0da1cfac893e4f6b8ab306510561f9f65887ee7190ccbc3769a"
},
"downloads": -1,
"filename": "zeblok_sdk-1.3.0-py3-none-any.whl",
"has_sig": false,
"md5_digest": "b49036177d2457161da7346e0013cfd3",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.9",
"size": 34627,
"upload_time": "2024-08-19T07:37:50",
"upload_time_iso_8601": "2024-08-19T07:37:50.370956Z",
"url": "https://files.pythonhosted.org/packages/3e/51/1c73da118faa4fc91f5641d9e00719a18fba11869127502be32bb31dad2d/zeblok_sdk-1.3.0-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "2f1db50218cc680f6a037433b86f8a9c0111c1129de9c4215efb4a9c5d8fb31d",
"md5": "54297ec40a15f25072417ad86c1ec0e8",
"sha256": "844b0d666ae415296c6f6a9a7e4bdcbbab560f866a233ee69610396a5a30c7c7"
},
"downloads": -1,
"filename": "zeblok_sdk-1.3.0.tar.gz",
"has_sig": false,
"md5_digest": "54297ec40a15f25072417ad86c1ec0e8",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.9",
"size": 29255,
"upload_time": "2024-08-19T07:37:51",
"upload_time_iso_8601": "2024-08-19T07:37:51.994891Z",
"url": "https://files.pythonhosted.org/packages/2f/1d/b50218cc680f6a037433b86f8a9c0111c1129de9c4215efb4a9c5d8fb31d/zeblok_sdk-1.3.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-08-19 07:37:51",
"github": false,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"lcname": "zeblok-sdk"
}