zedstat


Namezedstat JSON
Version 0.0.141 PyPI version JSON
download
home_pagehttps://github.com/zeroknowledgediscovery/zedstat
SummaryStatistics tools for ML models and deployment
upload_time2024-06-27 01:44:44
maintainerNone
docs_urlNone
authorzed.uchicago.edu
requires_python>=3.6
licenseLICENSE
keywords machine learning statistics
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            ===============
zedstat
===============

.. image:: https://zed.uchicago.edu/logo/logo_zedstat.png
   :height: 150px
   :align: center 

.. image:: https://zenodo.org/badge/529991779.svg
   :target: https://zenodo.org/badge/latestdoi/529991779

.. class:: no-web no-pdf

:Author: ZeD@UChicago <zed.uchicago.edu>
:Description: Tools for ML statistics 
:Documentation: https://zeroknowledgediscovery.github.io/zedstat/
:Example: https://github.com/zeroknowledgediscovery/zedstat/blob/master/examples/example1.ipynb
		
**Usage:**

.. code-block::

   from zedstat import zedstat
   zt=zedstat.processRoc(df=pd.read_csv('roc.csv'),
           order=3, 
           total_samples=100000,
           positive_samples=100,
           alpha=0.01,
           prevalence=.002)

   zt.smooth(STEP=0.001)
   zt.allmeasures(interpolate=True)
   zt.usample(precision=3)
   zt.getBounds()

   print(zt.auc())

   # find the high precision and high sensitivity operating points
   zt.operating_zone(LRminus=.65)
   rf0,txt0=zt.interpret(fpr=zt._operating_zone.fpr.values[0],number_of_positives=10)
   rf1,txt1=zt.interpret(fpr=zt._operating_zone.fpr.values[1],number_of_positives=10)
   display(zt._operating_zone)
   print('high precision operation:\n','\n '.join(txt0))
   print('high recall operation:\n','\n '.join(txt1))

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/zeroknowledgediscovery/zedstat",
    "name": "zedstat",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.6",
    "maintainer_email": null,
    "keywords": "machine learning, statistics",
    "author": "zed.uchicago.edu",
    "author_email": "ishanu@uchicago.edu",
    "download_url": "https://files.pythonhosted.org/packages/1e/6a/5626c11beee902c64ecdc63d3d1ada398d79a6ec1222be0e6e5eeb1cca5e/zedstat-0.0.141.tar.gz",
    "platform": null,
    "description": "===============\nzedstat\n===============\n\n.. image:: https://zed.uchicago.edu/logo/logo_zedstat.png\n   :height: 150px\n   :align: center \n\n.. image:: https://zenodo.org/badge/529991779.svg\n   :target: https://zenodo.org/badge/latestdoi/529991779\n\n.. class:: no-web no-pdf\n\n:Author: ZeD@UChicago <zed.uchicago.edu>\n:Description: Tools for ML statistics \n:Documentation: https://zeroknowledgediscovery.github.io/zedstat/\n:Example: https://github.com/zeroknowledgediscovery/zedstat/blob/master/examples/example1.ipynb\n\t\t\n**Usage:**\n\n.. code-block::\n\n   from zedstat import zedstat\n   zt=zedstat.processRoc(df=pd.read_csv('roc.csv'),\n           order=3, \n           total_samples=100000,\n           positive_samples=100,\n           alpha=0.01,\n           prevalence=.002)\n\n   zt.smooth(STEP=0.001)\n   zt.allmeasures(interpolate=True)\n   zt.usample(precision=3)\n   zt.getBounds()\n\n   print(zt.auc())\n\n   # find the high precision and high sensitivity operating points\n   zt.operating_zone(LRminus=.65)\n   rf0,txt0=zt.interpret(fpr=zt._operating_zone.fpr.values[0],number_of_positives=10)\n   rf1,txt1=zt.interpret(fpr=zt._operating_zone.fpr.values[1],number_of_positives=10)\n   display(zt._operating_zone)\n   print('high precision operation:\\n','\\n '.join(txt0))\n   print('high recall operation:\\n','\\n '.join(txt1))\n",
    "bugtrack_url": null,
    "license": "LICENSE",
    "summary": "Statistics tools for ML models and deployment",
    "version": "0.0.141",
    "project_urls": {
        "Download": "https://github.com/zeroknowledgediscovery/zedstat/archive/0.0.141.tar.gz",
        "Homepage": "https://github.com/zeroknowledgediscovery/zedstat"
    },
    "split_keywords": [
        "machine learning",
        " statistics"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "3587432a74a140a7e768eebc552cb2bfadbd32efd3585b4c07254debc7cefb31",
                "md5": "d864558c72ad8d0be0cee770a49ceee5",
                "sha256": "9892da23a5ebaddcc7a1b7709414540fe24afe6b341a99962edd8cdcffe81ffb"
            },
            "downloads": -1,
            "filename": "zedstat-0.0.141-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "d864558c72ad8d0be0cee770a49ceee5",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.6",
            "size": 170085,
            "upload_time": "2024-06-27T01:44:41",
            "upload_time_iso_8601": "2024-06-27T01:44:41.553247Z",
            "url": "https://files.pythonhosted.org/packages/35/87/432a74a140a7e768eebc552cb2bfadbd32efd3585b4c07254debc7cefb31/zedstat-0.0.141-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "1e6a5626c11beee902c64ecdc63d3d1ada398d79a6ec1222be0e6e5eeb1cca5e",
                "md5": "44ccd062743058a5844f3ada07d5db3f",
                "sha256": "6d63048767ed8bd16e7f34c9b7d5e33bb3c36229a80f83736ae83a90e78ba0b5"
            },
            "downloads": -1,
            "filename": "zedstat-0.0.141.tar.gz",
            "has_sig": false,
            "md5_digest": "44ccd062743058a5844f3ada07d5db3f",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.6",
            "size": 81387,
            "upload_time": "2024-06-27T01:44:44",
            "upload_time_iso_8601": "2024-06-27T01:44:44.373717Z",
            "url": "https://files.pythonhosted.org/packages/1e/6a/5626c11beee902c64ecdc63d3d1ada398d79a6ec1222be0e6e5eeb1cca5e/zedstat-0.0.141.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-06-27 01:44:44",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "zeroknowledgediscovery",
    "github_project": "zedstat",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "zedstat"
}
        
Elapsed time: 0.60446s