===============
zedstat
===============
.. image:: https://zed.uchicago.edu/logo/logo_zedstat.png
:height: 150px
:align: center
.. image:: https://zenodo.org/badge/529991779.svg
:target: https://zenodo.org/badge/latestdoi/529991779
.. class:: no-web no-pdf
:Author: ZeD@UChicago <zed.uchicago.edu>
:Description: Tools for ML statistics
:Documentation: https://zeroknowledgediscovery.github.io/zedstat/
:Example: https://github.com/zeroknowledgediscovery/zedstat/blob/master/examples/example1.ipynb
**Usage:**
.. code-block::
from zedstat import zedstat
zt=zedstat.processRoc(df=pd.read_csv('roc.csv'),
order=3,
total_samples=100000,
positive_samples=100,
alpha=0.01,
prevalence=.002)
zt.smooth(STEP=0.001)
zt.allmeasures(interpolate=True)
zt.usample(precision=3)
zt.getBounds()
print(zt.auc())
# find the high precision and high sensitivity operating points
zt.operating_zone(LRminus=.65)
rf0,txt0=zt.interpret(fpr=zt._operating_zone.fpr.values[0],number_of_positives=10)
rf1,txt1=zt.interpret(fpr=zt._operating_zone.fpr.values[1],number_of_positives=10)
display(zt._operating_zone)
print('high precision operation:\n','\n '.join(txt0))
print('high recall operation:\n','\n '.join(txt1))
Raw data
{
"_id": null,
"home_page": "https://github.com/zeroknowledgediscovery/zedstat",
"name": "zedstat",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.6",
"maintainer_email": null,
"keywords": "machine learning, statistics",
"author": "zed.uchicago.edu",
"author_email": "ishanu@uchicago.edu",
"download_url": "https://files.pythonhosted.org/packages/1e/6a/5626c11beee902c64ecdc63d3d1ada398d79a6ec1222be0e6e5eeb1cca5e/zedstat-0.0.141.tar.gz",
"platform": null,
"description": "===============\nzedstat\n===============\n\n.. image:: https://zed.uchicago.edu/logo/logo_zedstat.png\n :height: 150px\n :align: center \n\n.. image:: https://zenodo.org/badge/529991779.svg\n :target: https://zenodo.org/badge/latestdoi/529991779\n\n.. class:: no-web no-pdf\n\n:Author: ZeD@UChicago <zed.uchicago.edu>\n:Description: Tools for ML statistics \n:Documentation: https://zeroknowledgediscovery.github.io/zedstat/\n:Example: https://github.com/zeroknowledgediscovery/zedstat/blob/master/examples/example1.ipynb\n\t\t\n**Usage:**\n\n.. code-block::\n\n from zedstat import zedstat\n zt=zedstat.processRoc(df=pd.read_csv('roc.csv'),\n order=3, \n total_samples=100000,\n positive_samples=100,\n alpha=0.01,\n prevalence=.002)\n\n zt.smooth(STEP=0.001)\n zt.allmeasures(interpolate=True)\n zt.usample(precision=3)\n zt.getBounds()\n\n print(zt.auc())\n\n # find the high precision and high sensitivity operating points\n zt.operating_zone(LRminus=.65)\n rf0,txt0=zt.interpret(fpr=zt._operating_zone.fpr.values[0],number_of_positives=10)\n rf1,txt1=zt.interpret(fpr=zt._operating_zone.fpr.values[1],number_of_positives=10)\n display(zt._operating_zone)\n print('high precision operation:\\n','\\n '.join(txt0))\n print('high recall operation:\\n','\\n '.join(txt1))\n",
"bugtrack_url": null,
"license": "LICENSE",
"summary": "Statistics tools for ML models and deployment",
"version": "0.0.141",
"project_urls": {
"Download": "https://github.com/zeroknowledgediscovery/zedstat/archive/0.0.141.tar.gz",
"Homepage": "https://github.com/zeroknowledgediscovery/zedstat"
},
"split_keywords": [
"machine learning",
" statistics"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "3587432a74a140a7e768eebc552cb2bfadbd32efd3585b4c07254debc7cefb31",
"md5": "d864558c72ad8d0be0cee770a49ceee5",
"sha256": "9892da23a5ebaddcc7a1b7709414540fe24afe6b341a99962edd8cdcffe81ffb"
},
"downloads": -1,
"filename": "zedstat-0.0.141-py3-none-any.whl",
"has_sig": false,
"md5_digest": "d864558c72ad8d0be0cee770a49ceee5",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.6",
"size": 170085,
"upload_time": "2024-06-27T01:44:41",
"upload_time_iso_8601": "2024-06-27T01:44:41.553247Z",
"url": "https://files.pythonhosted.org/packages/35/87/432a74a140a7e768eebc552cb2bfadbd32efd3585b4c07254debc7cefb31/zedstat-0.0.141-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "1e6a5626c11beee902c64ecdc63d3d1ada398d79a6ec1222be0e6e5eeb1cca5e",
"md5": "44ccd062743058a5844f3ada07d5db3f",
"sha256": "6d63048767ed8bd16e7f34c9b7d5e33bb3c36229a80f83736ae83a90e78ba0b5"
},
"downloads": -1,
"filename": "zedstat-0.0.141.tar.gz",
"has_sig": false,
"md5_digest": "44ccd062743058a5844f3ada07d5db3f",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.6",
"size": 81387,
"upload_time": "2024-06-27T01:44:44",
"upload_time_iso_8601": "2024-06-27T01:44:44.373717Z",
"url": "https://files.pythonhosted.org/packages/1e/6a/5626c11beee902c64ecdc63d3d1ada398d79a6ec1222be0e6e5eeb1cca5e/zedstat-0.0.141.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-06-27 01:44:44",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "zeroknowledgediscovery",
"github_project": "zedstat",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"lcname": "zedstat"
}