<div align="center">
<img referrerpolicy="no-referrer-when-downgrade" src="https://static.scarf.sh/a.png?x-pxid=0fcbab94-8fbe-4a38-93e8-c2348450a42e" />
<h1 align="center">Beyond The Demo: Production-Grade AI Systems</h1>
<h3 align="center">ZenML brings battle-tested MLOps practices to your AI applications, handling evaluation, monitoring, and deployment at scale</h3>
</div>
<!-- PROJECT SHIELDS -->
<!--
*** I'm using markdown "reference style" links for readability.
*** Reference links are enclosed in brackets [ ] instead of parentheses ( ).
*** See the bottom of this document for the declaration of the reference variables
*** for contributors-url, forks-url, etc. This is an optional, concise syntax you may use.
*** https://www.markdownguide.org/basic-syntax/#reference-style-links
-->
<div align="center">
<!-- PROJECT LOGO -->
<br />
<a href="https://zenml.io">
<img alt="ZenML Logo" src="docs/book/.gitbook/assets/header.png" alt="ZenML Logo">
</a>
<br />
[![PyPi][pypi-shield]][pypi-url]
[![PyPi][pypiversion-shield]][pypi-url]
[![PyPi][downloads-shield]][downloads-url]
[![Contributors][contributors-shield]][contributors-url]
[![License][license-shield]][license-url]
<!-- [![Build][build-shield]][build-url] -->
<!-- [![CodeCov][codecov-shield]][codecov-url] -->
</div>
<!-- MARKDOWN LINKS & IMAGES -->
<!-- https://www.markdownguide.org/basic-syntax/#reference-style-links -->
[pypi-shield]: https://img.shields.io/pypi/pyversions/zenml?color=281158
[pypi-url]: https://pypi.org/project/zenml/
[pypiversion-shield]: https://img.shields.io/pypi/v/zenml?color=361776
[downloads-shield]: https://img.shields.io/pypi/dm/zenml?color=431D93
[downloads-url]: https://pypi.org/project/zenml/
[codecov-shield]: https://img.shields.io/codecov/c/gh/zenml-io/zenml?color=7A3EF4
[codecov-url]: https://codecov.io/gh/zenml-io/zenml
[contributors-shield]: https://img.shields.io/github/contributors/zenml-io/zenml?color=7A3EF4
[contributors-url]: https://github.com/zenml-io/zenml/graphs/contributors
[license-shield]: https://img.shields.io/github/license/zenml-io/zenml?color=9565F6
[license-url]: https://github.com/zenml-io/zenml/blob/main/LICENSE
[linkedin-shield]: https://img.shields.io/badge/-LinkedIn-black.svg?style=for-the-badge&logo=linkedin&colorB=555
[linkedin-url]: https://www.linkedin.com/company/zenml/
[twitter-shield]: https://img.shields.io/twitter/follow/zenml_io?style=for-the-badge
[twitter-url]: https://twitter.com/zenml_io
[slack-shield]: https://img.shields.io/badge/-Slack-black.svg?style=for-the-badge&logo=linkedin&colorB=555
[slack-url]: https://zenml.io/slack-invite
[build-shield]: https://img.shields.io/github/workflow/status/zenml-io/zenml/Build,%20Lint,%20Unit%20&%20Integration%20Test/develop?logo=github&style=for-the-badge
[build-url]: https://github.com/zenml-io/zenml/actions/workflows/ci.yml
---
Need help with documentation? Visit our [docs site](https://docs.zenml.io) for comprehensive guides and tutorials, or browse the [SDK reference](https://sdkdocs.zenml.io/) to find specific functions and classes.
## βοΈ Show Your Support
If you find ZenML helpful or interesting, please consider giving us a star on GitHub. Your support helps promote the project and lets others know that it's worth checking out.
Thank you for your support! π
[](https://github.com/zenml-io/zenml/stargazers)
## π€Έ Quickstart
[](https://colab.research.google.com/github/zenml-io/zenml/blob/main/examples/quickstart/quickstart.ipynb)
[Install ZenML](https://docs.zenml.io/getting-started/installation) via [PyPI](https://pypi.org/project/zenml/). Python 3.9 - 3.12 is required:
```bash
pip install "zenml[server]" notebook
```
Take a tour with the guided quickstart by running:
```bash
zenml go
```
## πͺ From Prototype to Production: AI Made Simple
### Create AI pipelines with minimal code changes
ZenML is an open-source framework that handles MLOps and LLMOps for engineers scaling AI beyond prototypes. Automate evaluation loops, track performance, and deploy updates across 100s of pipelinesβall while your RAG apps run like clockwork.
```python
from zenml import pipeline, step
@step
def load_rag_documents() -> dict:
# Load and chunk documents for RAG pipeline
documents = extract_web_content(url="https://www.zenml.io/")
return {"chunks": chunk_documents(documents)}
@step
def generate_embeddings(data: dict) -> None:
# Generate embeddings for RAG pipeline
embeddings = embed_documents(data['chunks'])
return {"embeddings": embeddings}
@step
def index_generator(
embeddings: dict,
) -> str:
# Generate index for RAG pipeline
index = create_index(embeddings)
return index.id
@pipeline
def rag_pipeline() -> str:
documents = load_rag_documents()
embeddings = generate_embeddings(documents)
index = index_generator(embeddings)
return index
```

### Easily provision an MLOps stack or reuse your existing infrastructure
The framework is a gentle entry point for practitioners to build complex ML pipelines with little knowledge required of the underlying infrastructure complexity. ZenML pipelines can be run on AWS, GCP, Azure, Airflow, Kubeflow and even on Kubernetes without having to change any code or know underlying internals.
ZenML provides different features to aid people to get started quickly on a remote setting as well. If you want to deploy a remote stack from scratch on your selected cloud provider, you can use the 1-click deployment feature either through the dashboard:

Or, through our CLI command:
```bash
zenml stack deploy --provider aws
```
Alternatively, if the necessary pieces of infrastructure are already deployed, you can register a cloud stack seamlessly through the stack wizard:
```bash
zenml stack register <STACK_NAME> --provider aws
```
Read more about [ZenML stacks](https://docs.zenml.io/user-guide/production-guide/understand-stacks).
### Run workloads easily on your production infrastructure
Once you have your MLOps stack configured, you can easily run workloads on it:
```bash
zenml stack set <STACK_NAME>
python run.py
```
```python
from zenml.config import ResourceSettings, DockerSettings
@step(
settings={
"resources": ResourceSettings(memory="16GB", gpu_count="1", cpu_count="8"),
"docker": DockerSettings(parent_image="pytorch/pytorch:1.12.1-cuda11.3-cudnn8-runtime")
}
)
def training(...):
...
```

### Track models, pipeline, and artifacts
Create a complete lineage of who, where, and what data and models are produced.
You'll be able to find out who produced which model, at what time, with which data, and on which version of the code. This guarantees full reproducibility and auditability.
```python
from zenml import Model
@step(model=Model(name="rag_llm", tags=["staging"]))
def deploy_rag(index_id: str) -> str:
deployment_id = deploy_to_endpoint(index_id)
return deployment_id
```

## π Key LLMOps Capabilities
### Continual RAG Improvement
**Build production-ready retrieval systems**
<div align="center">
<img src="/docs/book/.gitbook/assets/rag_zenml_home.png" width="800" alt="RAG Pipeline">
</div>
ZenML tracks document ingestion, embedding versions, and query patterns. Implement feedback loops and:
- Fix your RAG logic based on production logs
- Automatically re-ingest updated documents
- A/B test different embedding models
- Monitor retrieval quality metrics
### Reproducible Model Fine-Tuning
**Confidence in model updates**
<div align="center">
<img src="/docs/book/.gitbook/assets/finetune_zenml_home.png" width="800" alt="Finetuning Pipeline">
</div>
Maintain full lineage of SLM/LLM training runs:
- Version training data and hyperparameters
- Track performance across iterations
- Automatically promote validated models
- Roll back to previous versions if needed
### Purpose built for machine learning with integrations to your favorite tools
While ZenML brings a lot of value out of the box, it also integrates into your existing tooling and infrastructure without you having to be locked in.
```python
from bentoml._internal.bento import bento
@step(on_failure=alert_slack, experiment_tracker="mlflow")
def train_and_deploy(training_df: pd.DataFrame) -> bento.Bento
mlflow.autolog()
...
return bento
```

## π Your LLM Framework Isn't Enough for Production
While tools like LangChain and LlamaIndex help you **build** LLM workflows, ZenML helps you **productionize** them by adding:
β
**Artifact Tracking** - Every vector store index, fine-tuned model, and evaluation result versioned automatically
β
**Pipeline History** - See exactly what code/data produced each version of your RAG system
β
**Stage Promotion** - Move validated pipelines from staging β production with one click
## πΌοΈ Learning
The best way to learn about ZenML is the [docs](https://docs.zenml.io/). We recommend beginning with the [Starter Guide](https://docs.zenml.io/user-guide/starter-guide) to get up and running quickly.
If you are a visual learner, this 11-minute video tutorial is also a great start:
[](https://www.youtube.com/watch?v=wEVwIkDvUPs)
And finally, here are some other examples and use cases for inspiration:
1. [E2E Batch Inference](examples/e2e/): Feature engineering, training, and inference pipelines for tabular machine learning.
2. [Basic NLP with BERT](examples/e2e_nlp/): Feature engineering, training, and inference focused on NLP.
3. [LLM RAG Pipeline with Langchain and OpenAI](https://github.com/zenml-io/zenml-projects/tree/main/llm-agents): Using Langchain to create a simple RAG pipeline.
4. [Huggingface Model to Sagemaker Endpoint](https://github.com/zenml-io/zenml-projects/tree/main/huggingface-sagemaker): Automated MLOps on Amazon Sagemaker and HuggingFace
5. [LLMops](https://github.com/zenml-io/zenml-projects/tree/main/llm-complete-guide): Complete guide to do LLM with ZenML
## π Learn from Books
<div align="center">
<a href="https://www.amazon.com/LLM-Engineers-Handbook-engineering-production/dp/1836200072">
<img src="docs/book/.gitbook/assets/llm_engineering_handbook_cover.jpg" alt="LLM Engineer's Handbook Cover" width="200"/></img>
</a>
<a href="https://www.amazon.com/-/en/Andrew-McMahon/dp/1837631964">
<img src="docs/book/.gitbook/assets/ml_engineering_with_python.jpg" alt="Machine Learning Engineering with Python Cover" width="200"/></img>
</a>
</br></br>
</div>
ZenML is featured in these comprehensive guides to modern MLOps and LLM engineering. Learn how to build production-ready machine learning systems with real-world examples and best practices.
## π Deploy ZenML
For full functionality ZenML should be deployed on the cloud to
enable collaborative features as the central MLOps interface for teams.
Read more about various deployment options [here](https://docs.zenml.io/getting-started/deploying-zenml).
Or, sign up for [ZenML Pro to get a fully managed server on a free trial](https://cloud.zenml.io/?utm_source=readme&utm_medium=referral_link&utm_campaign=cloud_promotion&utm_content=signup_link).
## Use ZenML with VS Code
ZenML has a [VS Code extension](https://marketplace.visualstudio.com/items?itemName=ZenML.zenml-vscode) that allows you to inspect your stacks and pipeline runs directly from your editor. The extension also allows you to switch your stacks without needing to type any CLI commands.
<details>
<summary>π₯οΈ VS Code Extension in Action!</summary>
<div align="center">
<img width="60%" src="/docs/book/.gitbook/assets/zenml-extension-shortened.gif" alt="ZenML Extension">
</div>
</details>
## πΊ Roadmap
ZenML is being built in public. The [roadmap](https://zenml.io/roadmap) is a regularly updated source of truth for the ZenML community to understand where the product is going in the short, medium, and long term.
ZenML is managed by a [core team](https://zenml.io/company) of developers that are responsible for making key decisions and incorporating feedback from the community. The team oversees feedback via various channels,
and you can directly influence the roadmap as follows:
- Vote on your most wanted feature on our [Discussion
board](https://zenml.io/discussion).
- Start a thread in our [Slack channel](https://zenml.io/slack).
- [Create an issue](https://github.com/zenml-io/zenml/issues/new/choose) on our GitHub repo.
## π Contributing and Community
We would love to develop ZenML together with our community! The best way to get
started is to select any issue from the `[good-first-issue`
label](https://github.com/issues?q=is%3Aopen+is%3Aissue+archived%3Afalse+user%3Azenml-io+label%3A%22good+first+issue%22)
and open up a Pull Request!
If you
would like to contribute, please review our [Contributing
Guide](CONTRIBUTING.md) for all relevant details.
## π Getting Help
The first point of call should
be [our Slack group](https://zenml.io/slack-invite/).
Ask your questions about bugs or specific use cases, and someone from
the [core team](https://zenml.io/company) will respond.
Or, if you
prefer, [open an issue](https://github.com/zenml-io/zenml/issues/new/choose) on
our GitHub repo.
## π LLM-focused Learning Resources
1. [LL Complete Guide - Full RAG Pipeline](https://github.com/zenml-io/zenml-projects/tree/main/llm-complete-guide) - Document ingestion, embedding management, and query serving
2. [LLM Fine-Tuning Pipeline](https://github.com/zenml-io/zenml-projects/tree/main/llm-finetuning) - From data prep to deployed model
3. [LLM Agents Example](https://github.com/zenml-io/zenml-projects/tree/main/llm-agents) - Track conversation quality and tool usage
## π€ AI-Friendly Documentation with llms.txt
ZenML implements the llms.txt standard to make our documentation more accessible to AI assistants and LLMs. Our implementation includes:
- Base documentation at [zenml.io/llms.txt](https://zenml.io/llms.txt) with core user guides
- Specialized files for different documentation aspects:
- [Component guides](https://zenml.io/component-guide.txt) for integration details
- [How-to guides](https://zenml.io/how-to-guides.txt) for practical implementations
- [Complete documentation corpus](https://zenml.io/llms-full.txt) for comprehensive access
This structured approach helps AI tools better understand and utilize ZenML's documentation, enabling more accurate code suggestions and improved documentation search.
## π License
ZenML is distributed under the terms of the Apache License Version 2.0.
A complete version of the license is available in the [LICENSE](LICENSE) file in
this repository. Any contribution made to this project will be licensed under
the Apache License Version 2.0.
<div>
<p align="left">
<div align="left">
Join our <a href="https://zenml.io/slack" target="_blank">
<img width="18" src="https://cdn3.iconfinder.com/data/icons/logos-and-brands-adobe/512/306_Slack-512.png" alt="Slack"/>
<b>Slack Community</b> </a> and be part of the ZenML family.
</div>
<br />
<a href="https://zenml.io/features">Features</a>
Β·
<a href="https://zenml.io/roadmap">Roadmap</a>
Β·
<a href="https://github.com/zenml-io/zenml/issues">Report Bug</a>
Β·
<a href="https://zenml.io/pro">Sign up for ZenML Pro</a>
Β·
<a href="https://www.zenml.io/blog">Read Blog</a>
Β·
<a href="https://github.com/issues?q=is%3Aopen+is%3Aissue+archived%3Afalse+user%3Azenml-io+label%3A%22good+first+issue%22">Contribute to Open Source</a>
Β·
<a href="https://github.com/zenml-io/zenml-projects">Projects Showcase</a>
<br />
<br />
π Version 0.75.0 is out. Check out the release notes
<a href="https://github.com/zenml-io/zenml/releases">here</a>.
<br />
π₯οΈ Download our VS Code Extension <a href="https://marketplace.visualstudio.com/items?itemName=ZenML.zenml-vscode">here</a>.
<br />
</p>
</div>
Raw data
{
"_id": null,
"home_page": "https://zenml.io",
"name": "zenml-nightly",
"maintainer": null,
"docs_url": null,
"requires_python": "<3.13,>=3.9",
"maintainer_email": null,
"keywords": "machine learning, production, pipeline, mlops, devops",
"author": "ZenML GmbH",
"author_email": "info@zenml.io",
"download_url": "https://files.pythonhosted.org/packages/36/bf/1eb16324a65630445100ba2bb73c1a9586636c42cd7ab91ceed242b84cd7/zenml_nightly-0.75.0.dev20250306.tar.gz",
"platform": null,
"description": "<div align=\"center\">\n <img referrerpolicy=\"no-referrer-when-downgrade\" src=\"https://static.scarf.sh/a.png?x-pxid=0fcbab94-8fbe-4a38-93e8-c2348450a42e\" />\n <h1 align=\"center\">Beyond The Demo: Production-Grade AI Systems</h1>\n <h3 align=\"center\">ZenML brings battle-tested MLOps practices to your AI applications, handling evaluation, monitoring, and deployment at scale</h3>\n</div>\n\n<!-- PROJECT SHIELDS -->\n<!--\n*** I'm using markdown \"reference style\" links for readability.\n*** Reference links are enclosed in brackets [ ] instead of parentheses ( ).\n*** See the bottom of this document for the declaration of the reference variables\n*** for contributors-url, forks-url, etc. This is an optional, concise syntax you may use.\n*** https://www.markdownguide.org/basic-syntax/#reference-style-links\n-->\n\n<div align=\"center\">\n\n <!-- PROJECT LOGO -->\n <br />\n <a href=\"https://zenml.io\">\n <img alt=\"ZenML Logo\" src=\"docs/book/.gitbook/assets/header.png\" alt=\"ZenML Logo\">\n </a>\n <br />\n\n [![PyPi][pypi-shield]][pypi-url]\n [![PyPi][pypiversion-shield]][pypi-url]\n [![PyPi][downloads-shield]][downloads-url]\n [![Contributors][contributors-shield]][contributors-url]\n [![License][license-shield]][license-url]\n <!-- [![Build][build-shield]][build-url] -->\n <!-- [![CodeCov][codecov-shield]][codecov-url] -->\n\n</div>\n\n<!-- MARKDOWN LINKS & IMAGES -->\n<!-- https://www.markdownguide.org/basic-syntax/#reference-style-links -->\n\n[pypi-shield]: https://img.shields.io/pypi/pyversions/zenml?color=281158\n\n[pypi-url]: https://pypi.org/project/zenml/\n\n[pypiversion-shield]: https://img.shields.io/pypi/v/zenml?color=361776\n\n[downloads-shield]: https://img.shields.io/pypi/dm/zenml?color=431D93\n\n[downloads-url]: https://pypi.org/project/zenml/\n\n[codecov-shield]: https://img.shields.io/codecov/c/gh/zenml-io/zenml?color=7A3EF4\n\n[codecov-url]: https://codecov.io/gh/zenml-io/zenml\n\n[contributors-shield]: https://img.shields.io/github/contributors/zenml-io/zenml?color=7A3EF4\n\n[contributors-url]: https://github.com/zenml-io/zenml/graphs/contributors\n\n[license-shield]: https://img.shields.io/github/license/zenml-io/zenml?color=9565F6\n\n[license-url]: https://github.com/zenml-io/zenml/blob/main/LICENSE\n\n[linkedin-shield]: https://img.shields.io/badge/-LinkedIn-black.svg?style=for-the-badge&logo=linkedin&colorB=555\n\n[linkedin-url]: https://www.linkedin.com/company/zenml/\n\n[twitter-shield]: https://img.shields.io/twitter/follow/zenml_io?style=for-the-badge\n\n[twitter-url]: https://twitter.com/zenml_io\n\n[slack-shield]: https://img.shields.io/badge/-Slack-black.svg?style=for-the-badge&logo=linkedin&colorB=555\n\n[slack-url]: https://zenml.io/slack-invite\n\n[build-shield]: https://img.shields.io/github/workflow/status/zenml-io/zenml/Build,%20Lint,%20Unit%20&%20Integration%20Test/develop?logo=github&style=for-the-badge\n\n[build-url]: https://github.com/zenml-io/zenml/actions/workflows/ci.yml\n\n---\n\nNeed help with documentation? Visit our [docs site](https://docs.zenml.io) for comprehensive guides and tutorials, or browse the [SDK reference](https://sdkdocs.zenml.io/) to find specific functions and classes.\n\n## \u2b50\ufe0f Show Your Support\n\nIf you find ZenML helpful or interesting, please consider giving us a star on GitHub. Your support helps promote the project and lets others know that it's worth checking out. \n\nThank you for your support! \ud83c\udf1f\n\n[](https://github.com/zenml-io/zenml/stargazers)\n\n## \ud83e\udd38 Quickstart\n[](https://colab.research.google.com/github/zenml-io/zenml/blob/main/examples/quickstart/quickstart.ipynb)\n\n[Install ZenML](https://docs.zenml.io/getting-started/installation) via [PyPI](https://pypi.org/project/zenml/). Python 3.9 - 3.12 is required:\n\n```bash\npip install \"zenml[server]\" notebook\n```\n\nTake a tour with the guided quickstart by running:\n\n```bash\nzenml go\n```\n\n## \ud83e\ude84 From Prototype to Production: AI Made Simple\n\n### Create AI pipelines with minimal code changes\n\nZenML is an open-source framework that handles MLOps and LLMOps for engineers scaling AI beyond prototypes. Automate evaluation loops, track performance, and deploy updates across 100s of pipelines\u2014all while your RAG apps run like clockwork.\n\n```python\nfrom zenml import pipeline, step\n\n@step\ndef load_rag_documents() -> dict:\n # Load and chunk documents for RAG pipeline\n documents = extract_web_content(url=\"https://www.zenml.io/\")\n return {\"chunks\": chunk_documents(documents)}\n\n@step\ndef generate_embeddings(data: dict) -> None:\n # Generate embeddings for RAG pipeline\n embeddings = embed_documents(data['chunks'])\n return {\"embeddings\": embeddings}\n\n@step\ndef index_generator(\n embeddings: dict,\n) -> str:\n # Generate index for RAG pipeline\n index = create_index(embeddings)\n return index.id\n \n\n@pipeline\ndef rag_pipeline() -> str:\n documents = load_rag_documents()\n embeddings = generate_embeddings(documents)\n index = index_generator(embeddings)\n return index\n```\n\n\n### Easily provision an MLOps stack or reuse your existing infrastructure\n\nThe framework is a gentle entry point for practitioners to build complex ML pipelines with little knowledge required of the underlying infrastructure complexity. ZenML pipelines can be run on AWS, GCP, Azure, Airflow, Kubeflow and even on Kubernetes without having to change any code or know underlying internals. \n\nZenML provides different features to aid people to get started quickly on a remote setting as well. If you want to deploy a remote stack from scratch on your selected cloud provider, you can use the 1-click deployment feature either through the dashboard:\n\n\n\nOr, through our CLI command:\n\n```bash\nzenml stack deploy --provider aws\n```\n\nAlternatively, if the necessary pieces of infrastructure are already deployed, you can register a cloud stack seamlessly through the stack wizard:\n\n```bash\nzenml stack register <STACK_NAME> --provider aws\n```\n\nRead more about [ZenML stacks](https://docs.zenml.io/user-guide/production-guide/understand-stacks).\n\n### Run workloads easily on your production infrastructure\n\nOnce you have your MLOps stack configured, you can easily run workloads on it:\n\n```bash\nzenml stack set <STACK_NAME>\npython run.py\n```\n\n```python\nfrom zenml.config import ResourceSettings, DockerSettings\n\n@step(\n settings={\n \"resources\": ResourceSettings(memory=\"16GB\", gpu_count=\"1\", cpu_count=\"8\"),\n \"docker\": DockerSettings(parent_image=\"pytorch/pytorch:1.12.1-cuda11.3-cudnn8-runtime\")\n }\n)\ndef training(...):\n\t...\n```\n\n\n\n### Track models, pipeline, and artifacts\n\nCreate a complete lineage of who, where, and what data and models are produced.\n\nYou'll be able to find out who produced which model, at what time, with which data, and on which version of the code. This guarantees full reproducibility and auditability.\n\n```python\nfrom zenml import Model\n\n@step(model=Model(name=\"rag_llm\", tags=[\"staging\"]))\ndef deploy_rag(index_id: str) -> str:\n deployment_id = deploy_to_endpoint(index_id)\n return deployment_id\n```\n\n\n\n## \ud83d\ude80 Key LLMOps Capabilities\n\n### Continual RAG Improvement\n**Build production-ready retrieval systems** \n\n<div align=\"center\">\n <img src=\"/docs/book/.gitbook/assets/rag_zenml_home.png\" width=\"800\" alt=\"RAG Pipeline\">\n</div>\n\nZenML tracks document ingestion, embedding versions, and query patterns. Implement feedback loops and:\n- Fix your RAG logic based on production logs\n- Automatically re-ingest updated documents\n- A/B test different embedding models\n- Monitor retrieval quality metrics\n\n### Reproducible Model Fine-Tuning\n**Confidence in model updates**\n\n<div align=\"center\">\n <img src=\"/docs/book/.gitbook/assets/finetune_zenml_home.png\" width=\"800\" alt=\"Finetuning Pipeline\">\n</div>\n\nMaintain full lineage of SLM/LLM training runs:\n- Version training data and hyperparameters\n- Track performance across iterations\n- Automatically promote validated models\n- Roll back to previous versions if needed\n\n### Purpose built for machine learning with integrations to your favorite tools\n\nWhile ZenML brings a lot of value out of the box, it also integrates into your existing tooling and infrastructure without you having to be locked in.\n\n```python\nfrom bentoml._internal.bento import bento\n\n@step(on_failure=alert_slack, experiment_tracker=\"mlflow\")\ndef train_and_deploy(training_df: pd.DataFrame) -> bento.Bento\n\tmlflow.autolog()\n\t...\n\treturn bento\n```\n\n\n\n## \ud83d\udd04 Your LLM Framework Isn't Enough for Production\n\nWhile tools like LangChain and LlamaIndex help you **build** LLM workflows, ZenML helps you **productionize** them by adding:\n\n\u2705 **Artifact Tracking** - Every vector store index, fine-tuned model, and evaluation result versioned automatically \n\u2705 **Pipeline History** - See exactly what code/data produced each version of your RAG system \n\u2705 **Stage Promotion** - Move validated pipelines from staging \u2192 production with one click \n\n## \ud83d\uddbc\ufe0f Learning\n\nThe best way to learn about ZenML is the [docs](https://docs.zenml.io/). We recommend beginning with the [Starter Guide](https://docs.zenml.io/user-guide/starter-guide) to get up and running quickly.\n\nIf you are a visual learner, this 11-minute video tutorial is also a great start:\n\n[](https://www.youtube.com/watch?v=wEVwIkDvUPs)\n\nAnd finally, here are some other examples and use cases for inspiration:\n\n1. [E2E Batch Inference](examples/e2e/): Feature engineering, training, and inference pipelines for tabular machine learning.\n2. [Basic NLP with BERT](examples/e2e_nlp/): Feature engineering, training, and inference focused on NLP.\n3. [LLM RAG Pipeline with Langchain and OpenAI](https://github.com/zenml-io/zenml-projects/tree/main/llm-agents): Using Langchain to create a simple RAG pipeline.\n4. [Huggingface Model to Sagemaker Endpoint](https://github.com/zenml-io/zenml-projects/tree/main/huggingface-sagemaker): Automated MLOps on Amazon Sagemaker and HuggingFace\n5. [LLMops](https://github.com/zenml-io/zenml-projects/tree/main/llm-complete-guide): Complete guide to do LLM with ZenML\n\n\n## \ud83d\udcda Learn from Books\n\n<div align=\"center\">\n <a href=\"https://www.amazon.com/LLM-Engineers-Handbook-engineering-production/dp/1836200072\">\n <img src=\"docs/book/.gitbook/assets/llm_engineering_handbook_cover.jpg\" alt=\"LLM Engineer's Handbook Cover\" width=\"200\"/></img>\n </a> \n <a href=\"https://www.amazon.com/-/en/Andrew-McMahon/dp/1837631964\">\n <img src=\"docs/book/.gitbook/assets/ml_engineering_with_python.jpg\" alt=\"Machine Learning Engineering with Python Cover\" width=\"200\"/></img>\n </a>\n </br></br>\n</div>\n\nZenML is featured in these comprehensive guides to modern MLOps and LLM engineering. Learn how to build production-ready machine learning systems with real-world examples and best practices.\n\n## \ud83d\udd0b Deploy ZenML\n\nFor full functionality ZenML should be deployed on the cloud to\nenable collaborative features as the central MLOps interface for teams.\n\nRead more about various deployment options [here](https://docs.zenml.io/getting-started/deploying-zenml).\n\nOr, sign up for [ZenML Pro to get a fully managed server on a free trial](https://cloud.zenml.io/?utm_source=readme&utm_medium=referral_link&utm_campaign=cloud_promotion&utm_content=signup_link).\n\n## Use ZenML with VS Code\n\nZenML has a [VS Code extension](https://marketplace.visualstudio.com/items?itemName=ZenML.zenml-vscode) that allows you to inspect your stacks and pipeline runs directly from your editor. The extension also allows you to switch your stacks without needing to type any CLI commands.\n\n<details>\n <summary>\ud83d\udda5\ufe0f VS Code Extension in Action!</summary>\n <div align=\"center\">\n <img width=\"60%\" src=\"/docs/book/.gitbook/assets/zenml-extension-shortened.gif\" alt=\"ZenML Extension\">\n</div>\n</details>\n\n## \ud83d\uddfa Roadmap\n\nZenML is being built in public. The [roadmap](https://zenml.io/roadmap) is a regularly updated source of truth for the ZenML community to understand where the product is going in the short, medium, and long term.\n\nZenML is managed by a [core team](https://zenml.io/company) of developers that are responsible for making key decisions and incorporating feedback from the community. The team oversees feedback via various channels,\nand you can directly influence the roadmap as follows:\n\n- Vote on your most wanted feature on our [Discussion\nboard](https://zenml.io/discussion).\n- Start a thread in our [Slack channel](https://zenml.io/slack).\n- [Create an issue](https://github.com/zenml-io/zenml/issues/new/choose) on our GitHub repo.\n\n## \ud83d\ude4c Contributing and Community\n\nWe would love to develop ZenML together with our community! The best way to get\nstarted is to select any issue from the `[good-first-issue`\nlabel](https://github.com/issues?q=is%3Aopen+is%3Aissue+archived%3Afalse+user%3Azenml-io+label%3A%22good+first+issue%22)\nand open up a Pull Request! \n\nIf you\nwould like to contribute, please review our [Contributing\nGuide](CONTRIBUTING.md) for all relevant details.\n\n## \ud83c\udd98 Getting Help\n\nThe first point of call should\nbe [our Slack group](https://zenml.io/slack-invite/).\nAsk your questions about bugs or specific use cases, and someone from\nthe [core team](https://zenml.io/company) will respond.\nOr, if you\nprefer, [open an issue](https://github.com/zenml-io/zenml/issues/new/choose) on\nour GitHub repo.\n\n## \ud83d\udcda LLM-focused Learning Resources\n\n1. [LL Complete Guide - Full RAG Pipeline](https://github.com/zenml-io/zenml-projects/tree/main/llm-complete-guide) - Document ingestion, embedding management, and query serving\n2. [LLM Fine-Tuning Pipeline](https://github.com/zenml-io/zenml-projects/tree/main/llm-finetuning) - From data prep to deployed model\n3. [LLM Agents Example](https://github.com/zenml-io/zenml-projects/tree/main/llm-agents) - Track conversation quality and tool usage\n\n## \ud83e\udd16 AI-Friendly Documentation with llms.txt\n\nZenML implements the llms.txt standard to make our documentation more accessible to AI assistants and LLMs. Our implementation includes:\n\n- Base documentation at [zenml.io/llms.txt](https://zenml.io/llms.txt) with core user guides\n- Specialized files for different documentation aspects:\n - [Component guides](https://zenml.io/component-guide.txt) for integration details\n - [How-to guides](https://zenml.io/how-to-guides.txt) for practical implementations\n - [Complete documentation corpus](https://zenml.io/llms-full.txt) for comprehensive access\n\nThis structured approach helps AI tools better understand and utilize ZenML's documentation, enabling more accurate code suggestions and improved documentation search.\n\n## \ud83d\udcdc License\n\nZenML is distributed under the terms of the Apache License Version 2.0.\nA complete version of the license is available in the [LICENSE](LICENSE) file in\nthis repository. Any contribution made to this project will be licensed under\nthe Apache License Version 2.0.\n\n<div>\n<p align=\"left\">\n <div align=\"left\">\n Join our <a href=\"https://zenml.io/slack\" target=\"_blank\">\n <img width=\"18\" src=\"https://cdn3.iconfinder.com/data/icons/logos-and-brands-adobe/512/306_Slack-512.png\" alt=\"Slack\"/>\n <b>Slack Community</b> </a> and be part of the ZenML family.\n </div>\n <br />\n <a href=\"https://zenml.io/features\">Features</a>\n \u00b7\n <a href=\"https://zenml.io/roadmap\">Roadmap</a>\n \u00b7\n <a href=\"https://github.com/zenml-io/zenml/issues\">Report Bug</a>\n \u00b7\n <a href=\"https://zenml.io/pro\">Sign up for ZenML Pro</a>\n \u00b7\n <a href=\"https://www.zenml.io/blog\">Read Blog</a>\n \u00b7\n <a href=\"https://github.com/issues?q=is%3Aopen+is%3Aissue+archived%3Afalse+user%3Azenml-io+label%3A%22good+first+issue%22\">Contribute to Open Source</a>\n \u00b7\n <a href=\"https://github.com/zenml-io/zenml-projects\">Projects Showcase</a>\n <br />\n <br />\n \ud83c\udf89 Version 0.75.0 is out. Check out the release notes\n <a href=\"https://github.com/zenml-io/zenml/releases\">here</a>.\n <br />\n \ud83d\udda5\ufe0f Download our VS Code Extension <a href=\"https://marketplace.visualstudio.com/items?itemName=ZenML.zenml-vscode\">here</a>.\n <br />\n </p>\n</div>\n",
"bugtrack_url": null,
"license": "Apache-2.0",
"summary": "ZenML: Write production-ready ML code.",
"version": "0.75.0.dev20250306",
"project_urls": {
"Documentation": "https://docs.zenml.io",
"Homepage": "https://zenml.io",
"Repository": "https://github.com/zenml-io/zenml"
},
"split_keywords": [
"machine learning",
" production",
" pipeline",
" mlops",
" devops"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "b47c99cfbf8d4478eee618b930d8ff00010fd992d84cbac68cdd0bf63f91b001",
"md5": "d0ca2619f0bb084f82937b766adecf1a",
"sha256": "5bb1c33650d163cc9afc4e8c60bbaccdaea64c6a847c79705b74166d7189b8b5"
},
"downloads": -1,
"filename": "zenml_nightly-0.75.0.dev20250306-py3-none-any.whl",
"has_sig": false,
"md5_digest": "d0ca2619f0bb084f82937b766adecf1a",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": "<3.13,>=3.9",
"size": 3952356,
"upload_time": "2025-03-06T00:59:15",
"upload_time_iso_8601": "2025-03-06T00:59:15.877886Z",
"url": "https://files.pythonhosted.org/packages/b4/7c/99cfbf8d4478eee618b930d8ff00010fd992d84cbac68cdd0bf63f91b001/zenml_nightly-0.75.0.dev20250306-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "36bf1eb16324a65630445100ba2bb73c1a9586636c42cd7ab91ceed242b84cd7",
"md5": "36d84a5cf94b8a5d45dfe2186cc4cfe1",
"sha256": "1a2e2a532ed38c8a3ac0b828e180906b70cd1d6a833ddfa283e124c72e271250"
},
"downloads": -1,
"filename": "zenml_nightly-0.75.0.dev20250306.tar.gz",
"has_sig": false,
"md5_digest": "36d84a5cf94b8a5d45dfe2186cc4cfe1",
"packagetype": "sdist",
"python_version": "source",
"requires_python": "<3.13,>=3.9",
"size": 3113267,
"upload_time": "2025-03-06T00:59:18",
"upload_time_iso_8601": "2025-03-06T00:59:18.643104Z",
"url": "https://files.pythonhosted.org/packages/36/bf/1eb16324a65630445100ba2bb73c1a9586636c42cd7ab91ceed242b84cd7/zenml_nightly-0.75.0.dev20250306.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-03-06 00:59:18",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "zenml-io",
"github_project": "zenml",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "zenml-nightly"
}