zeus-mcmc


Namezeus-mcmc JSON
Version 2.5.4 PyPI version JSON
download
home_pagehttps://github.com/minaskar/zeus
Summaryzeus: Lightning Fast MCMC
upload_time2023-01-12 04:14:20
maintainer
docs_urlNone
authorMinas Karamanis
requires_python>=3.7
licenseGPLv3
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            ![logo](logo.png)

**zeus is a Python implementation of the Ensemble Slice Sampling method.**

- Fast & Robust *Bayesian Inference*,
- Efficient *Markov Chain Monte Carlo (MCMC)*,
- Black-box inference, no hand-tuning,
- Excellent performance in terms of autocorrelation time and convergence rate,
- Scale to multiple CPUs without any extra effort,
- Automated Convergence diagnostics.

[![GitHub](https://img.shields.io/badge/GitHub-minaskar%2Fzeus-blue)](https://github.com/minaskar/zeus)
[![arXiv](https://img.shields.io/badge/arXiv-2002.06212-red)](https://arxiv.org/abs/2002.06212)
[![arXiv](https://img.shields.io/badge/arXiv-2105.03468-brightgreen)](https://arxiv.org/abs/2105.03468)
[![ascl](https://img.shields.io/badge/ascl-2008.010-blue.svg?colorB=262255)](https://ascl.net/2008.010)
[![Build Status](https://travis-ci.com/minaskar/zeus.svg?token=xnVWRZ3TFg1zxQYQyLs4&branch=master)](https://travis-ci.com/minaskar/zeus)
[![License: GPL v3](https://img.shields.io/badge/License-GPLv3-blue.svg)](https://github.com/minaskar/zeus/blob/master/LICENSE)
[![Documentation Status](https://readthedocs.org/projects/zeus-mcmc/badge/?version=latest&token=4455dbf495c5a4eaba52de26ac56628aad85eb3eadc90badfd1703d0a819a0f9)](https://zeus-mcmc.readthedocs.io/en/latest/?badge=latest)
[![Downloads](https://pepy.tech/badge/zeus-mcmc)](https://pepy.tech/project/zeus-mcmc)


## Example

For instance, if you wanted to draw samples from a 10-dimensional Gaussian, you would do something like:

```python
import zeus
import numpy as np

def log_prob(x, ivar):
    return - 0.5 * np.sum(ivar * x**2.0)

nsteps, nwalkers, ndim = 1000, 100, 10
ivar = 1.0 / np.random.rand(ndim)
start = np.random.randn(nwalkers,ndim)

sampler = zeus.EnsembleSampler(nwalkers, ndim, log_prob, args=[ivar])
sampler.run_mcmc(start, nsteps)
chain = sampler.get_chain(flat=True)
```

## Documentation

Read the docs at [zeus-mcmc.readthedocs.io](https://zeus-mcmc.readthedocs.io)


## Installation

To install ``zeus`` using ``pip`` run:

```bash
pip install zeus-mcmc
```

To install ``zeus`` in a [[Ana]Conda](https://conda.io/projects/conda/en/latest/index.html) environment use:

```bash
conda install -c conda-forge zeus-mcmc
```

## Attribution

Please cite the following papers if you found this code useful in your research:

```bash
@article{karamanis2021zeus,
  title={zeus: A Python implementation of Ensemble Slice Sampling for efficient Bayesian parameter inference},
  author={Karamanis, Minas and Beutler, Florian and Peacock, John A},
  journal={arXiv preprint arXiv:2105.03468},
  year={2021}
}

@article{karamanis2020ensemble,
    title = {Ensemble slice sampling: Parallel, black-box and gradient-free inference for correlated & multimodal distributions},
    author = {Karamanis, Minas and Beutler, Florian},
    journal = {arXiv preprint arXiv: 2002.06212},
    year = {2020}
}
```

## Licence

Copyright 2019-2021 Minas Karamanis and contributors.

zeus is free software made available under the GPL-3.0 License. For details see the `LICENSE` file.

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/minaskar/zeus",
    "name": "zeus-mcmc",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.7",
    "maintainer_email": "",
    "keywords": "",
    "author": "Minas Karamanis",
    "author_email": "minaskar@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/15/c0/248a600ae0f3d1437612821f7c528c895b6a8408a052c352d4cac46dcf94/zeus-mcmc-2.5.4.tar.gz",
    "platform": "any",
    "description": "![logo](logo.png)\n\n**zeus is a Python implementation of the Ensemble Slice Sampling method.**\n\n- Fast & Robust *Bayesian Inference*,\n- Efficient *Markov Chain Monte Carlo (MCMC)*,\n- Black-box inference, no hand-tuning,\n- Excellent performance in terms of autocorrelation time and convergence rate,\n- Scale to multiple CPUs without any extra effort,\n- Automated Convergence diagnostics.\n\n[![GitHub](https://img.shields.io/badge/GitHub-minaskar%2Fzeus-blue)](https://github.com/minaskar/zeus)\n[![arXiv](https://img.shields.io/badge/arXiv-2002.06212-red)](https://arxiv.org/abs/2002.06212)\n[![arXiv](https://img.shields.io/badge/arXiv-2105.03468-brightgreen)](https://arxiv.org/abs/2105.03468)\n[![ascl](https://img.shields.io/badge/ascl-2008.010-blue.svg?colorB=262255)](https://ascl.net/2008.010)\n[![Build Status](https://travis-ci.com/minaskar/zeus.svg?token=xnVWRZ3TFg1zxQYQyLs4&branch=master)](https://travis-ci.com/minaskar/zeus)\n[![License: GPL v3](https://img.shields.io/badge/License-GPLv3-blue.svg)](https://github.com/minaskar/zeus/blob/master/LICENSE)\n[![Documentation Status](https://readthedocs.org/projects/zeus-mcmc/badge/?version=latest&token=4455dbf495c5a4eaba52de26ac56628aad85eb3eadc90badfd1703d0a819a0f9)](https://zeus-mcmc.readthedocs.io/en/latest/?badge=latest)\n[![Downloads](https://pepy.tech/badge/zeus-mcmc)](https://pepy.tech/project/zeus-mcmc)\n\n\n## Example\n\nFor instance, if you wanted to draw samples from a 10-dimensional Gaussian, you would do something like:\n\n```python\nimport zeus\nimport numpy as np\n\ndef log_prob(x, ivar):\n    return - 0.5 * np.sum(ivar * x**2.0)\n\nnsteps, nwalkers, ndim = 1000, 100, 10\nivar = 1.0 / np.random.rand(ndim)\nstart = np.random.randn(nwalkers,ndim)\n\nsampler = zeus.EnsembleSampler(nwalkers, ndim, log_prob, args=[ivar])\nsampler.run_mcmc(start, nsteps)\nchain = sampler.get_chain(flat=True)\n```\n\n## Documentation\n\nRead the docs at [zeus-mcmc.readthedocs.io](https://zeus-mcmc.readthedocs.io)\n\n\n## Installation\n\nTo install ``zeus`` using ``pip`` run:\n\n```bash\npip install zeus-mcmc\n```\n\nTo install ``zeus`` in a [[Ana]Conda](https://conda.io/projects/conda/en/latest/index.html) environment use:\n\n```bash\nconda install -c conda-forge zeus-mcmc\n```\n\n## Attribution\n\nPlease cite the following papers if you found this code useful in your research:\n\n```bash\n@article{karamanis2021zeus,\n  title={zeus: A Python implementation of Ensemble Slice Sampling for efficient Bayesian parameter inference},\n  author={Karamanis, Minas and Beutler, Florian and Peacock, John A},\n  journal={arXiv preprint arXiv:2105.03468},\n  year={2021}\n}\n\n@article{karamanis2020ensemble,\n    title = {Ensemble slice sampling: Parallel, black-box and gradient-free inference for correlated & multimodal distributions},\n    author = {Karamanis, Minas and Beutler, Florian},\n    journal = {arXiv preprint arXiv: 2002.06212},\n    year = {2020}\n}\n```\n\n## Licence\n\nCopyright 2019-2021 Minas Karamanis and contributors.\n\nzeus is free software made available under the GPL-3.0 License. For details see the `LICENSE` file.\n",
    "bugtrack_url": null,
    "license": "GPLv3",
    "summary": "zeus: Lightning Fast MCMC",
    "version": "2.5.4",
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "48cb99ee8021fa305d65b1fb369fabf96ccc65c60282407390e5355bb9e62f9f",
                "md5": "2006a06536e91459bf00df4bbaf2fe84",
                "sha256": "a64a7dae15f413200c6d590a3edfc3b8bc63c6bea3acdf123c0397c8089e123f"
            },
            "downloads": -1,
            "filename": "zeus_mcmc-2.5.4-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "2006a06536e91459bf00df4bbaf2fe84",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.7",
            "size": 24122,
            "upload_time": "2023-01-12T04:14:19",
            "upload_time_iso_8601": "2023-01-12T04:14:19.240714Z",
            "url": "https://files.pythonhosted.org/packages/48/cb/99ee8021fa305d65b1fb369fabf96ccc65c60282407390e5355bb9e62f9f/zeus_mcmc-2.5.4-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "15c0248a600ae0f3d1437612821f7c528c895b6a8408a052c352d4cac46dcf94",
                "md5": "94484a0a92700a27dd1a3c43845dbc69",
                "sha256": "594baa90de4ad4488c4db5ed6a0446f7103bc4b3de787f4d7d23c91c9aa88769"
            },
            "downloads": -1,
            "filename": "zeus-mcmc-2.5.4.tar.gz",
            "has_sig": false,
            "md5_digest": "94484a0a92700a27dd1a3c43845dbc69",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.7",
            "size": 35051,
            "upload_time": "2023-01-12T04:14:20",
            "upload_time_iso_8601": "2023-01-12T04:14:20.688593Z",
            "url": "https://files.pythonhosted.org/packages/15/c0/248a600ae0f3d1437612821f7c528c895b6a8408a052c352d4cac46dcf94/zeus-mcmc-2.5.4.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-01-12 04:14:20",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "github_user": "minaskar",
    "github_project": "zeus",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "requirements": [],
    "lcname": "zeus-mcmc"
}
        
Elapsed time: 0.03680s