Name | zhipuai JSON |
Version |
2.1.5.20250801
JSON |
| download |
home_page | None |
Summary | A SDK library for accessing big model apis from ZhipuAI |
upload_time | 2025-08-01 11:16:16 |
maintainer | None |
docs_url | None |
author | Zhipu AI |
requires_python | !=2.7.*,!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*,!=3.5.*,!=3.6.*,!=3.7.*,>=3.8 |
license | None |
keywords |
|
VCS |
|
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
# ZhipuAI Open Platform Python SDK
[](https://pypi.org/project/zhipuai/)
[](https://opensource.org/licenses/MIT)
[](https://www.python.org/downloads/)
[中文文档](README_CN.md) | English
The official Python SDK for ZhipuAI's large model open interface, making it easier for developers to call ZhipuAI's open APIs.
## ✨ Features
- **Type Safety**: Complete type annotations for all interfaces
- **Easy Integration**: Simple initialization and intuitive method calls
- **High Performance**: Built-in connection pooling and request optimization
- **Secure**: Automatic token caching and secure API key management
- **Lightweight**: Minimal dependencies with efficient resource usage
- **Streaming Support**: Real-time streaming responses for chat completions
## 📦 Installation
### Requirements
- **Python**: 3.9+
- **Package Manager**: pip
### Install via pip
```bash
pip install zhipuai
```
### Core Dependencies
| Package | Version | Purpose |
|---------|---------|----------|
| `httpx` | `>=0.23.0` | HTTP client for API requests |
| `pydantic` | `>=1.9.0,<3.0.0` | Data validation and serialization |
| `typing-extensions` | `>=4.0.0` | Enhanced type hints support |
## 🚀 Quick Start
### Basic Usage
```python
from zhipuai import ZhipuAI
# Initialize client
client = ZhipuAI(api_key="your-api-key")
# Create chat completion
response = client.chat.completions.create(
model="glm-4",
messages=[
{"role": "user", "content": "Hello, ZhipuAI!"}
]
)
print(response.choices[0].message.content)
```
### Client Configuration
#### Environment Variables
```bash
export ZHIPUAI_API_KEY="your-api-key"
export ZHIPUAI_BASE_URL="https://open.bigmodel.cn/api/paas/v4/" # Optional
```
#### Code Configuration
```python
from zhipuai import ZhipuAI
client = ZhipuAI(
api_key="your-api-key",
base_url="https://open.bigmodel.cn/api/paas/v4/" # Optional
)
```
### Advanced Configuration
Customize client behavior with additional parameters:
```python
from zhipuai import ZhipuAI
import httpx
client = ZhipuAI(
api_key="your-api-key",
timeout=httpx.Timeout(timeout=300.0, connect=8.0), # Request timeout
max_retries=3, # Retry attempts
base_url="https://open.bigmodel.cn/api/paas/v4/" # Custom API endpoint
)
```
## 📖 Usage Examples
### Basic Chat
```python
from zhipuai import ZhipuAI
client = ZhipuAI(api_key="your-api-key") # Uses environment variable ZHIPUAI_API_KEY
response = client.chat.completions.create(
model="glm-4",
messages=[
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "What is artificial intelligence?"}
],
tools=[
{
"type": "web_search",
"web_search": {
"search_query": "Search the Zhipu",
"search_result": True,
}
}
],
extra_body={"temperature": 0.5, "max_tokens": 50}
)
print(response)
```
### Streaming Chat
```python
from zhipuai import ZhipuAI
client = ZhipuAI(api_key="your-api-key")
response = client.chat.completions.create(
model="glm-4",
messages=[
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "Tell me a story about AI."}
],
stream=True
)
for chunk in response:
if chunk.choices[0].delta.content:
print(chunk.choices[0].delta)
```
### Multimodal Chat
```python
import base64
from zhipuai import ZhipuAI
def encode_image(image_path):
"""Encode image to base64 format"""
with open(image_path, "rb") as image_file:
return base64.b64encode(image_file.read()).decode('utf-8')
client = ZhipuAI(api_key="your-api-key")
base64_image = encode_image("path/to/your/image.jpg")
response = client.chat.completions.create(
model="glm-4v",
extra_body={"temperature": 0.5, "max_tokens": 50},
messages=[
{
"role": "user",
"content": [
{
"type": "text",
"text": "What's in this image?"
},
{
"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64,{base64_image}"
}
}
]
}
]
)
print(response)
```
### Character Role-Playing
```python
from zhipuai import ZhipuAI
client = ZhipuAI(api_key="your-api-key")
response = client.chat.completions.create(
model="charglm-3",
messages=[
{
"role": "user",
"content": "Hello, how are you doing lately?"
}
],
meta={
"user_info": "I am a film director who specializes in music-themed movies.",
"bot_info": "You are a popular domestic female singer and actress with outstanding musical talent.",
"bot_name": "Xiaoya",
"user_name": "Director"
}
)
print(response)
```
### Assistant Conversation
```python
from zhipuai import ZhipuAI
client = ZhipuAI(api_key="your-api-key")
response = client.assistant.conversation(
assistant_id="your_assistant_id", # You can use 65940acff94777010aa6b796 for testing
model="glm-4-assistant",
messages=[
{
"role": "user",
"content": [{
"type": "text",
"text": "Help me search for the latest ZhipuAI product information"
}]
}
],
stream=True,
attachments=None,
metadata=None,
request_id="request_1790291013237211136",
user_id="12345678"
)
for chunk in response:
print(chunk)
```
### Video Generation
```python
from zhipuai import ZhipuAI
client = ZhipuAI(api_key="your-api-key")
response = client.videos.generations(
model="cogvideox-2",
prompt="A beautiful sunset beach scene",
quality="quality", # Output mode: use "quality" for higher quality, "speed" for faster generation
with_audio=True, # Generate video with background audio
size="1920x1080", # Video resolution (up to 4K, e.g. "3840x2160")
fps=30, # Frames per second (choose 30 fps or 60 fps)
user_id="user_12345"
)
# Generation may take some time
result = client.videos.retrieve_videos_result(id=response.id)
print(result)
```
## 🚨 Error Handling
The SDK provides comprehensive error handling:
```python
from zhipuai import ZhipuAI
import zhipuai
client = ZhipuAI()
try:
response = client.chat.completions.create(
model="glm-4",
messages=[
{"role": "user", "content": "Hello, ZhipuAI!"}
]
)
print(response.choices[0].message.content)
except zhipuai.APIStatusError as err:
print(f"API Status Error: {err}")
except zhipuai.APITimeoutError as err:
print(f"Request Timeout: {err}")
except Exception as err:
print(f"Other Error: {err}")
```
### Error Codes
| Status Code | Error Type | Description |
|-------------|------------|-------------|
| 400 | `APIRequestFailedError` | Invalid request parameters |
| 401 | `APIAuthenticationError` | Authentication failed |
| 429 | `APIReachLimitError` | Rate limit exceeded |
| 500 | `APIInternalError` | Internal server error |
| 503 | `APIServerFlowExceedError` | Server overloaded |
| N/A | `APIStatusError` | General API error |
## 📈 Version Updates
For detailed version history and update information, please see [Release-Note.md](Release-Note.md).
## 📄 License
This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.
## 🤝 Contributing
Contributions are welcome! Please feel free to submit a Pull Request.
## 📞 Support
For questions and technical support, please visit [ZhipuAI Open Platform](https://open.bigmodel.cn/) or check our documentation.
Raw data
{
"_id": null,
"home_page": null,
"name": "zhipuai",
"maintainer": null,
"docs_url": null,
"requires_python": "!=2.7.*,!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*,!=3.5.*,!=3.6.*,!=3.7.*,>=3.8",
"maintainer_email": null,
"keywords": null,
"author": "Zhipu AI",
"author_email": null,
"download_url": "https://files.pythonhosted.org/packages/3c/23/49aae9dc28443ab7d29f9b15ab3b1ceec634210c1ed24ee1c9fa34167351/zhipuai-2.1.5.20250801.tar.gz",
"platform": null,
"description": "# ZhipuAI Open Platform Python SDK\n\n[](https://pypi.org/project/zhipuai/)\n[](https://opensource.org/licenses/MIT)\n[](https://www.python.org/downloads/)\n\n[\u4e2d\u6587\u6587\u6863](README_CN.md) | English\n\nThe official Python SDK for ZhipuAI's large model open interface, making it easier for developers to call ZhipuAI's open APIs.\n\n## \u2728 Features\n\n- **Type Safety**: Complete type annotations for all interfaces\n- **Easy Integration**: Simple initialization and intuitive method calls\n- **High Performance**: Built-in connection pooling and request optimization\n- **Secure**: Automatic token caching and secure API key management\n- **Lightweight**: Minimal dependencies with efficient resource usage\n- **Streaming Support**: Real-time streaming responses for chat completions\n\n## \ud83d\udce6 Installation\n\n### Requirements\n\n- **Python**: 3.9+\n- **Package Manager**: pip\n\n### Install via pip\n\n```bash\npip install zhipuai\n```\n\n### Core Dependencies\n\n| Package | Version | Purpose |\n|---------|---------|----------|\n| `httpx` | `>=0.23.0` | HTTP client for API requests |\n| `pydantic` | `>=1.9.0,<3.0.0` | Data validation and serialization |\n| `typing-extensions` | `>=4.0.0` | Enhanced type hints support |\n\n## \ud83d\ude80 Quick Start\n\n### Basic Usage\n\n```python\nfrom zhipuai import ZhipuAI\n\n# Initialize client\nclient = ZhipuAI(api_key=\"your-api-key\")\n\n# Create chat completion\nresponse = client.chat.completions.create(\n model=\"glm-4\",\n messages=[\n {\"role\": \"user\", \"content\": \"Hello, ZhipuAI!\"}\n ]\n)\nprint(response.choices[0].message.content)\n```\n\n### Client Configuration\n\n#### Environment Variables\n\n```bash\nexport ZHIPUAI_API_KEY=\"your-api-key\"\nexport ZHIPUAI_BASE_URL=\"https://open.bigmodel.cn/api/paas/v4/\" # Optional\n```\n\n#### Code Configuration\n\n```python\nfrom zhipuai import ZhipuAI\n\nclient = ZhipuAI(\n api_key=\"your-api-key\",\n base_url=\"https://open.bigmodel.cn/api/paas/v4/\" # Optional\n)\n```\n\n### Advanced Configuration\n\nCustomize client behavior with additional parameters:\n\n```python\nfrom zhipuai import ZhipuAI\nimport httpx\n\nclient = ZhipuAI(\n api_key=\"your-api-key\",\n timeout=httpx.Timeout(timeout=300.0, connect=8.0), # Request timeout\n max_retries=3, # Retry attempts\n base_url=\"https://open.bigmodel.cn/api/paas/v4/\" # Custom API endpoint\n)\n```\n\n## \ud83d\udcd6 Usage Examples\n\n### Basic Chat\n\n```python\nfrom zhipuai import ZhipuAI\n\nclient = ZhipuAI(api_key=\"your-api-key\") # Uses environment variable ZHIPUAI_API_KEY\nresponse = client.chat.completions.create(\n model=\"glm-4\",\n messages=[\n {\"role\": \"system\", \"content\": \"You are a helpful assistant.\"},\n {\"role\": \"user\", \"content\": \"What is artificial intelligence?\"}\n ],\n tools=[\n {\n \"type\": \"web_search\",\n \"web_search\": {\n \"search_query\": \"Search the Zhipu\",\n \"search_result\": True,\n }\n }\n ],\n extra_body={\"temperature\": 0.5, \"max_tokens\": 50}\n)\nprint(response)\n```\n\n### Streaming Chat\n\n```python\nfrom zhipuai import ZhipuAI\n\nclient = ZhipuAI(api_key=\"your-api-key\")\nresponse = client.chat.completions.create(\n model=\"glm-4\",\n messages=[\n {\"role\": \"system\", \"content\": \"You are a helpful assistant.\"},\n {\"role\": \"user\", \"content\": \"Tell me a story about AI.\"}\n ],\n stream=True\n)\n\nfor chunk in response:\n if chunk.choices[0].delta.content:\n print(chunk.choices[0].delta)\n```\n\n### Multimodal Chat\n\n```python\nimport base64\nfrom zhipuai import ZhipuAI\n\ndef encode_image(image_path):\n \"\"\"Encode image to base64 format\"\"\"\n with open(image_path, \"rb\") as image_file:\n return base64.b64encode(image_file.read()).decode('utf-8')\n\nclient = ZhipuAI(api_key=\"your-api-key\")\nbase64_image = encode_image(\"path/to/your/image.jpg\")\n\nresponse = client.chat.completions.create(\n model=\"glm-4v\",\n extra_body={\"temperature\": 0.5, \"max_tokens\": 50},\n messages=[\n {\n \"role\": \"user\",\n \"content\": [\n {\n \"type\": \"text\",\n \"text\": \"What's in this image?\"\n },\n {\n \"type\": \"image_url\",\n \"image_url\": {\n \"url\": f\"data:image/jpeg;base64,{base64_image}\"\n }\n }\n ]\n }\n ]\n)\nprint(response)\n```\n\n### Character Role-Playing\n\n```python\nfrom zhipuai import ZhipuAI\n\nclient = ZhipuAI(api_key=\"your-api-key\")\nresponse = client.chat.completions.create(\n model=\"charglm-3\",\n messages=[\n {\n \"role\": \"user\",\n \"content\": \"Hello, how are you doing lately?\"\n }\n ],\n meta={\n \"user_info\": \"I am a film director who specializes in music-themed movies.\",\n \"bot_info\": \"You are a popular domestic female singer and actress with outstanding musical talent.\",\n \"bot_name\": \"Xiaoya\",\n \"user_name\": \"Director\"\n }\n)\nprint(response)\n```\n\n### Assistant Conversation\n\n```python\nfrom zhipuai import ZhipuAI\n\nclient = ZhipuAI(api_key=\"your-api-key\")\nresponse = client.assistant.conversation(\n assistant_id=\"your_assistant_id\", # You can use 65940acff94777010aa6b796 for testing\n model=\"glm-4-assistant\",\n messages=[\n {\n \"role\": \"user\",\n \"content\": [{\n \"type\": \"text\",\n \"text\": \"Help me search for the latest ZhipuAI product information\"\n }]\n }\n ],\n stream=True,\n attachments=None,\n metadata=None,\n request_id=\"request_1790291013237211136\",\n user_id=\"12345678\"\n)\n\nfor chunk in response:\n print(chunk)\n```\n\n### Video Generation\n\n```python\nfrom zhipuai import ZhipuAI\n\nclient = ZhipuAI(api_key=\"your-api-key\")\nresponse = client.videos.generations(\n model=\"cogvideox-2\",\n prompt=\"A beautiful sunset beach scene\",\n quality=\"quality\", # Output mode: use \"quality\" for higher quality, \"speed\" for faster generation\n with_audio=True, # Generate video with background audio\n size=\"1920x1080\", # Video resolution (up to 4K, e.g. \"3840x2160\")\n fps=30, # Frames per second (choose 30 fps or 60 fps)\n user_id=\"user_12345\"\n)\n\n# Generation may take some time\nresult = client.videos.retrieve_videos_result(id=response.id)\nprint(result)\n```\n\n## \ud83d\udea8 Error Handling\n\nThe SDK provides comprehensive error handling:\n\n```python\nfrom zhipuai import ZhipuAI\nimport zhipuai\n\nclient = ZhipuAI()\n\ntry:\n response = client.chat.completions.create(\n model=\"glm-4\",\n messages=[\n {\"role\": \"user\", \"content\": \"Hello, ZhipuAI!\"}\n ]\n )\n print(response.choices[0].message.content)\n \nexcept zhipuai.APIStatusError as err:\n print(f\"API Status Error: {err}\")\nexcept zhipuai.APITimeoutError as err:\n print(f\"Request Timeout: {err}\")\nexcept Exception as err:\n print(f\"Other Error: {err}\")\n```\n\n### Error Codes\n\n| Status Code | Error Type | Description |\n|-------------|------------|-------------|\n| 400 | `APIRequestFailedError` | Invalid request parameters |\n| 401 | `APIAuthenticationError` | Authentication failed |\n| 429 | `APIReachLimitError` | Rate limit exceeded |\n| 500 | `APIInternalError` | Internal server error |\n| 503 | `APIServerFlowExceedError` | Server overloaded |\n| N/A | `APIStatusError` | General API error |\n\n## \ud83d\udcc8 Version Updates\n\nFor detailed version history and update information, please see [Release-Note.md](Release-Note.md).\n\n## \ud83d\udcc4 License\n\nThis project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.\n\n## \ud83e\udd1d Contributing\n\nContributions are welcome! Please feel free to submit a Pull Request.\n\n## \ud83d\udcde Support\n\nFor questions and technical support, please visit [ZhipuAI Open Platform](https://open.bigmodel.cn/) or check our documentation.\n \n\n",
"bugtrack_url": null,
"license": null,
"summary": "A SDK library for accessing big model apis from ZhipuAI",
"version": "2.1.5.20250801",
"project_urls": null,
"split_keywords": [],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "2a974aea38358f2f16d3b40234aeaa901154d52a2e852f4e538f0d60533de1ac",
"md5": "4b267d42285fc4918bbf51a24f3fbfda",
"sha256": "25b9c3d7eb584c39565836f9e9c00851beab5c7ac1991df949b40703dd99c34e"
},
"downloads": -1,
"filename": "zhipuai-2.1.5.20250801-py3-none-any.whl",
"has_sig": false,
"md5_digest": "4b267d42285fc4918bbf51a24f3fbfda",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": "!=2.7.*,!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*,!=3.5.*,!=3.6.*,!=3.7.*,>=3.8",
"size": 116286,
"upload_time": "2025-08-01T11:16:14",
"upload_time_iso_8601": "2025-08-01T11:16:14.795856Z",
"url": "https://files.pythonhosted.org/packages/2a/97/4aea38358f2f16d3b40234aeaa901154d52a2e852f4e538f0d60533de1ac/zhipuai-2.1.5.20250801-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "3c2349aae9dc28443ab7d29f9b15ab3b1ceec634210c1ed24ee1c9fa34167351",
"md5": "1d4938155a8e1e994e94f46f590f7ca7",
"sha256": "1735638eb5ffb5e34dd977be4f5f6e8bbb59076b2c4e0d1cc0f59324006cc5d9"
},
"downloads": -1,
"filename": "zhipuai-2.1.5.20250801.tar.gz",
"has_sig": false,
"md5_digest": "1d4938155a8e1e994e94f46f590f7ca7",
"packagetype": "sdist",
"python_version": "source",
"requires_python": "!=2.7.*,!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*,!=3.5.*,!=3.6.*,!=3.7.*,>=3.8",
"size": 68934,
"upload_time": "2025-08-01T11:16:16",
"upload_time_iso_8601": "2025-08-01T11:16:16.075354Z",
"url": "https://files.pythonhosted.org/packages/3c/23/49aae9dc28443ab7d29f9b15ab3b1ceec634210c1ed24ee1c9fa34167351/zhipuai-2.1.5.20250801.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-08-01 11:16:16",
"github": false,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"lcname": "zhipuai"
}