Blauwal3-Text


NameBlauwal3-Text JSON
Version 1.6.0 PyPI version JSON
download
home_pagehttps://github.com/biolab/orange3-text
Summary用于文本挖掘的蓝鲸附加组件。
upload_time2024-09-27 08:26:16
maintainerNone
docs_urlNone
author大圣实验楼
requires_pythonNone
licenseNone
keywords orange3-text data mining orange3 add-on
VCS
bugtrack_url
requirements anyqt beautifulsoup4 biopython conllu docx2txt gensim httpx langdetect lemmagen3 nltk numpy odfpy Orange3 orange-widget-base orange-canvas-core owlready2 pandas pypdf pyqtgraph pyyaml requests scikit-learn scipy serverfiles simhash shapely six tweepy ufal.udpipe trimesh wikipedia yake
Travis-CI No Travis.
coveralls test coverage
            Blauwal3 Text
============

Orange add-on for text mining. It provides access to publicly available data,
like NY Times, Twitter and PubMed. Further, it provides tools for preprocessing,
constructing vector spaces (like bag-of-words, topic modeling and word2vec) and
visualizations like word cloud end geo map. All features can be combined with
powerful data mining techniques from the Orange data mining framework.

See [documentation](http://orange3-text.readthedocs.org/).

Features
--------
#### Access to data
* Load a corpus of text documents
* Access publicly available data (The Guardian, NY Times, Twitter, Wikipedia, PubMed)

#### Text analysis
* Preprocess corpus
* Generate bag of words
* Embed documents into vector space
* Perform sentiment analysis
* Detect emotions in tweets
* Discover topics in the text
* Compute document statistics
* Visualize frequent words in the word cloud
* Find words that enrich selected documents

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/biolab/orange3-text",
    "name": "Blauwal3-Text",
    "maintainer": null,
    "docs_url": null,
    "requires_python": null,
    "maintainer_email": null,
    "keywords": "orange3-text, data mining, orange3 add-on",
    "author": "\u5927\u5723\u5b9e\u9a8c\u697c",
    "author_email": "dashenglab@163.com",
    "download_url": "https://files.pythonhosted.org/packages/d0/a8/9d952331227c5f324d735edbfa4773520126dde666cba99d7cd4172d0ff9/blauwal3_text-1.6.0.tar.gz",
    "platform": null,
    "description": "Blauwal3 Text\r\n============\r\n\r\nOrange add-on for text mining. It provides access to publicly available data,\r\nlike NY Times, Twitter and PubMed. Further, it provides tools for preprocessing,\r\nconstructing vector spaces (like bag-of-words, topic modeling and word2vec) and\r\nvisualizations like word cloud end geo map. All features can be combined with\r\npowerful data mining techniques from the Orange data mining framework.\r\n\r\nSee [documentation](http://orange3-text.readthedocs.org/).\r\n\r\nFeatures\r\n--------\r\n#### Access to data\r\n* Load a corpus of text documents\r\n* Access publicly available data (The Guardian, NY Times, Twitter, Wikipedia, PubMed)\r\n\r\n#### Text analysis\r\n* Preprocess corpus\r\n* Generate bag of words\r\n* Embed documents into vector space\r\n* Perform sentiment analysis\r\n* Detect emotions in tweets\r\n* Discover topics in the text\r\n* Compute document statistics\r\n* Visualize frequent words in the word cloud\r\n* Find words that enrich selected documents\r\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "\u7528\u4e8e\u6587\u672c\u6316\u6398\u7684\u84dd\u9cb8\u9644\u52a0\u7ec4\u4ef6\u3002",
    "version": "1.6.0",
    "project_urls": {
        "Download": "https://github.com/biolab/orange3-text/tarball/1.16.0",
        "Homepage": "https://github.com/biolab/orange3-text"
    },
    "split_keywords": [
        "orange3-text",
        " data mining",
        " orange3 add-on"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "78b74c222327a1b8171039f49e3b972046d38b5a94078369475e89b0369bc779",
                "md5": "92fc8f0d2f407f91444a966de4128d97",
                "sha256": "65fa25b5467c13b753f30ea2fdf80f298d6d2b1e5c3bd5c5db7b25758c7e9d06"
            },
            "downloads": -1,
            "filename": "Blauwal3_Text-1.6.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "92fc8f0d2f407f91444a966de4128d97",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 20837832,
            "upload_time": "2024-09-27T08:25:59",
            "upload_time_iso_8601": "2024-09-27T08:25:59.205738Z",
            "url": "https://files.pythonhosted.org/packages/78/b7/4c222327a1b8171039f49e3b972046d38b5a94078369475e89b0369bc779/Blauwal3_Text-1.6.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "d0a89d952331227c5f324d735edbfa4773520126dde666cba99d7cd4172d0ff9",
                "md5": "b43e8c5039cf3b2c0cb5a3923246a846",
                "sha256": "7798cf08b2fb8acb0a472f19a81f6df78c0e65ede3451f8d830fc656d9ea12ce"
            },
            "downloads": -1,
            "filename": "blauwal3_text-1.6.0.tar.gz",
            "has_sig": false,
            "md5_digest": "b43e8c5039cf3b2c0cb5a3923246a846",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 30369030,
            "upload_time": "2024-09-27T08:26:16",
            "upload_time_iso_8601": "2024-09-27T08:26:16.110926Z",
            "url": "https://files.pythonhosted.org/packages/d0/a8/9d952331227c5f324d735edbfa4773520126dde666cba99d7cd4172d0ff9/blauwal3_text-1.6.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-09-27 08:26:16",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "biolab",
    "github_project": "orange3-text",
    "travis_ci": false,
    "coveralls": true,
    "github_actions": true,
    "requirements": [
        {
            "name": "anyqt",
            "specs": []
        },
        {
            "name": "beautifulsoup4",
            "specs": []
        },
        {
            "name": "biopython",
            "specs": []
        },
        {
            "name": "conllu",
            "specs": []
        },
        {
            "name": "docx2txt",
            "specs": [
                [
                    ">=",
                    "0.6"
                ]
            ]
        },
        {
            "name": "gensim",
            "specs": [
                [
                    ">=",
                    "4.3.3"
                ]
            ]
        },
        {
            "name": "httpx",
            "specs": [
                [
                    "!=",
                    "0.23.1"
                ]
            ]
        },
        {
            "name": "langdetect",
            "specs": []
        },
        {
            "name": "lemmagen3",
            "specs": []
        },
        {
            "name": "nltk",
            "specs": [
                [
                    ">=",
                    "3.9.1"
                ]
            ]
        },
        {
            "name": "numpy",
            "specs": []
        },
        {
            "name": "odfpy",
            "specs": [
                [
                    ">=",
                    "1.3.5"
                ]
            ]
        },
        {
            "name": "Orange3",
            "specs": [
                [
                    ">=",
                    "3.35.0"
                ]
            ]
        },
        {
            "name": "orange-widget-base",
            "specs": [
                [
                    ">=",
                    "4.20.0"
                ]
            ]
        },
        {
            "name": "orange-canvas-core",
            "specs": []
        },
        {
            "name": "owlready2",
            "specs": []
        },
        {
            "name": "pandas",
            "specs": []
        },
        {
            "name": "pypdf",
            "specs": []
        },
        {
            "name": "pyqtgraph",
            "specs": []
        },
        {
            "name": "pyyaml",
            "specs": []
        },
        {
            "name": "requests",
            "specs": []
        },
        {
            "name": "scikit-learn",
            "specs": []
        },
        {
            "name": "scipy",
            "specs": []
        },
        {
            "name": "serverfiles",
            "specs": []
        },
        {
            "name": "simhash",
            "specs": [
                [
                    ">=",
                    "1.11"
                ]
            ]
        },
        {
            "name": "shapely",
            "specs": [
                [
                    ">=",
                    "2.0"
                ]
            ]
        },
        {
            "name": "six",
            "specs": []
        },
        {
            "name": "tweepy",
            "specs": [
                [
                    ">=",
                    "4.0.0"
                ]
            ]
        },
        {
            "name": "ufal.udpipe",
            "specs": [
                [
                    ">=",
                    "1.2.0.3"
                ]
            ]
        },
        {
            "name": "trimesh",
            "specs": [
                [
                    ">=",
                    "3.9.8"
                ]
            ]
        },
        {
            "name": "wikipedia",
            "specs": []
        },
        {
            "name": "yake",
            "specs": []
        }
    ],
    "tox": true,
    "lcname": "blauwal3-text"
}
        
Elapsed time: 1.23251s