<div align="center">
<a href="https://opendilab.github.io/DI-treetensor/"><img width="500px" height="auto" src="https://github.com/opendilab/DI-treetensor/blob/main/docs/source/_static/di-treetensor.svg"></a>
</div>
---
[![PyPI](https://img.shields.io/pypi/v/DI-treetensor)](https://pypi.org/project/DI-treetensor/)
![PyPI - Python Version](https://img.shields.io/pypi/pyversions/DI-treetensor)
![Loc](https://img.shields.io/endpoint?url=https://gist.githubusercontent.com/HansBug/bcda5612b798ebcd354f35447139a4a5/raw/loc.json)
![Comments](https://img.shields.io/endpoint?url=https://gist.githubusercontent.com/HansBug/bcda5612b798ebcd354f35447139a4a5/raw/comments.json)
[![Docs Deploy](https://github.com/opendilab/DI-treetensor/workflows/Docs%20Deploy/badge.svg)](https://github.com/opendilab/DI-treetensor/actions?query=workflow%3A%22Docs+Deploy%22)
[![Code Test](https://github.com/opendilab/DI-treetensor/workflows/Code%20Test/badge.svg)](https://github.com/opendilab/DI-treetensor/actions?query=workflow%3A%22Code+Test%22)
[![Badge Creation](https://github.com/opendilab/DI-treetensor/workflows/Badge%20Creation/badge.svg)](https://github.com/opendilab/DI-treetensor/actions?query=workflow%3A%22Badge+Creation%22)
[![Package Release](https://github.com/opendilab/DI-treetensor/workflows/Package%20Release/badge.svg)](https://github.com/opendilab/DI-treetensor/actions?query=workflow%3A%22Package+Release%22)
[![codecov](https://codecov.io/gh/opendilab/DI-treetensor/branch/main/graph/badge.svg?token=XJVDP4EFAT)](https://codecov.io/gh/opendilab/DI-treetensor)
[![GitHub stars](https://img.shields.io/github/stars/opendilab/DI-treetensor)](https://github.com/opendilab/DI-treetensor/stargazers)
[![GitHub forks](https://img.shields.io/github/forks/opendilab/DI-treetensor)](https://github.com/opendilab/DI-treetensor/network)
![GitHub commit activity](https://img.shields.io/github/commit-activity/m/opendilab/DI-treetensor)
[![GitHub issues](https://img.shields.io/github/issues/opendilab/DI-treetensor)](https://github.com/opendilab/DI-treetensor/issues)
[![GitHub pulls](https://img.shields.io/github/issues-pr/opendilab/DI-treetensor)](https://github.com/opendilab/DI-treetensor/pulls)
[![Contributors](https://img.shields.io/github/contributors/opendilab/DI-treetensor)](https://github.com/opendilab/DI-treetensor/graphs/contributors)
[![GitHub license](https://img.shields.io/github/license/opendilab/DI-treetensor)](https://github.com/opendilab/DI-treetensor/blob/master/LICENSE)
`treetensor` is a generalized tree-based tensor structure mainly developed by [OpenDILab Contributors](https://github.com/opendilab).
Almost all the operation can be supported in form of trees in a convenient way to simplify the structure processing when the calculation is tree-based.
## Installation
You can simply install it with `pip` command line from the official PyPI site.
```shell
pip install di-treetensor
```
For more information about installation, you can refer to [Installation](https://opendilab.github.io/DI-treetensor/main/tutorials/installation/index.html#).
## Documentation
The detailed documentation are hosted on [https://opendilab.github.io/DI-treetensor](https://opendilab.github.io/DI-treetensor/).
Only english version is provided now, the chinese documentation is still under development.
## Quick Start
You can easily create a tree value object based on `FastTreeValue`.
```python
import builtins
import os
from functools import partial
import treetensor.torch as torch
print = partial(builtins.print, sep=os.linesep)
if __name__ == '__main__':
# create a tree tensor
t = torch.randn({'a': (2, 3), 'b': {'x': (3, 4)}})
print(t)
print(torch.randn(4, 5)) # create a normal tensor
print()
# structure of tree
print('Structure of tree')
print('t.a:', t.a) # t.a is a native tensor
print('t.b:', t.b) # t.b is a tree tensor
print('t.b.x', t.b.x) # t.b.x is a native tensor
print()
# math calculations
print('Math calculation')
print('t ** 2:', t ** 2)
print('torch.sin(t).cos()', torch.sin(t).cos())
print()
# backward calculation
print('Backward calculation')
t.requires_grad_(True)
t.std().arctan().backward()
print('grad of t:', t.grad)
print()
# native operation
# all the ops can be used as the original usage of `torch`
print('Native operation')
print('torch.sin(t.a)', torch.sin(t.a)) # sin of native tensor
```
The result should be
```text
<Tensor 0x7f0dae602760>
├── a --> tensor([[-1.2672, -1.5817, -0.3141],
│ [ 1.8107, -0.1023, 0.0940]])
└── b --> <Tensor 0x7f0dae602820>
└── x --> tensor([[ 1.2224, -0.3445, -0.9980, -0.4085],
[ 1.5956, 0.8825, -0.5702, -0.2247],
[ 0.9235, 0.4538, 0.8775, -0.2642]])
tensor([[-0.9559, 0.7684, 0.2682, -0.6419, 0.8637],
[ 0.9526, 0.2927, -0.0591, 1.2804, -0.2455],
[ 0.4699, -0.9998, 0.6324, -0.6885, 1.1488],
[ 0.8920, 0.4401, -0.7785, 0.5931, 0.0435]])
Structure of tree
t.a:
tensor([[-1.2672, -1.5817, -0.3141],
[ 1.8107, -0.1023, 0.0940]])
t.b:
<Tensor 0x7f0dae602820>
└── x --> tensor([[ 1.2224, -0.3445, -0.9980, -0.4085],
[ 1.5956, 0.8825, -0.5702, -0.2247],
[ 0.9235, 0.4538, 0.8775, -0.2642]])
t.b.x
tensor([[ 1.2224, -0.3445, -0.9980, -0.4085],
[ 1.5956, 0.8825, -0.5702, -0.2247],
[ 0.9235, 0.4538, 0.8775, -0.2642]])
Math calculation
t ** 2:
<Tensor 0x7f0dae602eb0>
├── a --> tensor([[1.6057, 2.5018, 0.0986],
│ [3.2786, 0.0105, 0.0088]])
└── b --> <Tensor 0x7f0dae60c040>
└── x --> tensor([[1.4943, 0.1187, 0.9960, 0.1669],
[2.5458, 0.7789, 0.3252, 0.0505],
[0.8528, 0.2059, 0.7699, 0.0698]])
torch.sin(t).cos()
<Tensor 0x7f0dae621910>
├── a --> tensor([[0.5782, 0.5404, 0.9527],
│ [0.5642, 0.9948, 0.9956]])
└── b --> <Tensor 0x7f0dae6216a0>
└── x --> tensor([[0.5898, 0.9435, 0.6672, 0.9221],
[0.5406, 0.7163, 0.8578, 0.9753],
[0.6983, 0.9054, 0.7185, 0.9661]])
Backward calculation
grad of t:
<Tensor 0x7f0dae60c400>
├── a --> tensor([[-0.0435, -0.0535, -0.0131],
│ [ 0.0545, -0.0064, -0.0002]])
└── b --> <Tensor 0x7f0dae60cbe0>
└── x --> tensor([[ 0.0357, -0.0141, -0.0349, -0.0162],
[ 0.0476, 0.0249, -0.0213, -0.0103],
[ 0.0262, 0.0113, 0.0248, -0.0116]])
Native operation
torch.sin(t.a)
tensor([[-0.9543, -0.9999, -0.3089],
[ 0.9714, -0.1021, 0.0939]], grad_fn=<SinBackward>)
```
For more quick start explanation and further usage, take a look at:
* [Quick Start](https://opendilab.github.io/DI-treetensor/main/tutorials/quick_start/index.html)
## Extension
If you need to translate `treevalue` object to runnable source code, you may use the [potc-treevalue](https://github.com/potc-dev/potc-treevalue) plugin with the installation command below
```
pip install DI-treetensor[potc]
```
In potc, you can translate the objects to runnable python source code, which can be loaded to objects afterwards by the python interpreter, like the following graph
![potc_system](https://github.com/opendilab/DI-treetensor/blob/main/docs/source/_static/potc-doing.svg)
For more information, you can refer to
- [potc-dev/potc](https://github.com/potc-dev/potc)
- [potc-dev/potc-treevalue](https://github.com/potc-dev/potc-treevalue)
- [potc-dev/potc-torch](https://github.com/potc-dev/potc-torch)
- [Potc Plugin Installation](https://opendilab.github.io/DI-treetensor/main/tutorials/plugins/index.html#potc-support)
## Contribution
We appreciate all contributions to improve DI-treetensor, both logic and system designs. Please refer to CONTRIBUTING.md for more guides.
And users can join our [slack communication channel](https://join.slack.com/t/opendilab/shared_invite/zt-v9tmv4fp-nUBAQEH1_Kuyu_q4plBssQ), or contact the core developer [HansBug](https://github.com/HansBug) for more detailed discussion.
## License
`DI-treetensor` released under the Apache 2.0 license.
Raw data
{
"_id": null,
"home_page": "https://github.com/opendilab/DI-treetensor",
"name": "DI-treetensor",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.8",
"maintainer_email": null,
"keywords": "Tree-structured Value Management",
"author": "HansBug, DI-engine's Contributors",
"author_email": "hansbug@buaa.edu.cn",
"download_url": "https://files.pythonhosted.org/packages/1e/ae/08a0f4d8413a582a36de3fd8b7f6b4b228415a86b78956ccae74363327d1/di_treetensor-0.5.0.tar.gz",
"platform": null,
"description": "<div align=\"center\">\n <a href=\"https://opendilab.github.io/DI-treetensor/\"><img width=\"500px\" height=\"auto\" src=\"https://github.com/opendilab/DI-treetensor/blob/main/docs/source/_static/di-treetensor.svg\"></a>\n</div>\n\n---\n\n[![PyPI](https://img.shields.io/pypi/v/DI-treetensor)](https://pypi.org/project/DI-treetensor/)\n![PyPI - Python Version](https://img.shields.io/pypi/pyversions/DI-treetensor)\n![Loc](https://img.shields.io/endpoint?url=https://gist.githubusercontent.com/HansBug/bcda5612b798ebcd354f35447139a4a5/raw/loc.json)\n![Comments](https://img.shields.io/endpoint?url=https://gist.githubusercontent.com/HansBug/bcda5612b798ebcd354f35447139a4a5/raw/comments.json)\n\n[![Docs Deploy](https://github.com/opendilab/DI-treetensor/workflows/Docs%20Deploy/badge.svg)](https://github.com/opendilab/DI-treetensor/actions?query=workflow%3A%22Docs+Deploy%22)\n[![Code Test](https://github.com/opendilab/DI-treetensor/workflows/Code%20Test/badge.svg)](https://github.com/opendilab/DI-treetensor/actions?query=workflow%3A%22Code+Test%22)\n[![Badge Creation](https://github.com/opendilab/DI-treetensor/workflows/Badge%20Creation/badge.svg)](https://github.com/opendilab/DI-treetensor/actions?query=workflow%3A%22Badge+Creation%22)\n[![Package Release](https://github.com/opendilab/DI-treetensor/workflows/Package%20Release/badge.svg)](https://github.com/opendilab/DI-treetensor/actions?query=workflow%3A%22Package+Release%22)\n[![codecov](https://codecov.io/gh/opendilab/DI-treetensor/branch/main/graph/badge.svg?token=XJVDP4EFAT)](https://codecov.io/gh/opendilab/DI-treetensor)\n\n[![GitHub stars](https://img.shields.io/github/stars/opendilab/DI-treetensor)](https://github.com/opendilab/DI-treetensor/stargazers)\n[![GitHub forks](https://img.shields.io/github/forks/opendilab/DI-treetensor)](https://github.com/opendilab/DI-treetensor/network)\n![GitHub commit activity](https://img.shields.io/github/commit-activity/m/opendilab/DI-treetensor)\n[![GitHub issues](https://img.shields.io/github/issues/opendilab/DI-treetensor)](https://github.com/opendilab/DI-treetensor/issues)\n[![GitHub pulls](https://img.shields.io/github/issues-pr/opendilab/DI-treetensor)](https://github.com/opendilab/DI-treetensor/pulls)\n[![Contributors](https://img.shields.io/github/contributors/opendilab/DI-treetensor)](https://github.com/opendilab/DI-treetensor/graphs/contributors)\n[![GitHub license](https://img.shields.io/github/license/opendilab/DI-treetensor)](https://github.com/opendilab/DI-treetensor/blob/master/LICENSE)\n\n`treetensor` is a generalized tree-based tensor structure mainly developed by [OpenDILab Contributors](https://github.com/opendilab).\n\nAlmost all the operation can be supported in form of trees in a convenient way to simplify the structure processing when the calculation is tree-based.\n\n## Installation\n\nYou can simply install it with `pip` command line from the official PyPI site.\n\n```shell\npip install di-treetensor\n```\n\nFor more information about installation, you can refer to [Installation](https://opendilab.github.io/DI-treetensor/main/tutorials/installation/index.html#).\n\n## Documentation\n\nThe detailed documentation are hosted on [https://opendilab.github.io/DI-treetensor](https://opendilab.github.io/DI-treetensor/).\n\nOnly english version is provided now, the chinese documentation is still under development.\n\n## Quick Start\n\nYou can easily create a tree value object based on `FastTreeValue`.\n\n```python\nimport builtins\nimport os\nfrom functools import partial\n\nimport treetensor.torch as torch\n\nprint = partial(builtins.print, sep=os.linesep)\n\nif __name__ == '__main__':\n # create a tree tensor\n t = torch.randn({'a': (2, 3), 'b': {'x': (3, 4)}})\n print(t)\n print(torch.randn(4, 5)) # create a normal tensor\n print()\n\n # structure of tree\n print('Structure of tree')\n print('t.a:', t.a) # t.a is a native tensor\n print('t.b:', t.b) # t.b is a tree tensor\n print('t.b.x', t.b.x) # t.b.x is a native tensor\n print()\n\n # math calculations\n print('Math calculation')\n print('t ** 2:', t ** 2)\n print('torch.sin(t).cos()', torch.sin(t).cos())\n print()\n\n # backward calculation\n print('Backward calculation')\n t.requires_grad_(True)\n t.std().arctan().backward()\n print('grad of t:', t.grad)\n print()\n\n # native operation\n # all the ops can be used as the original usage of `torch`\n print('Native operation')\n print('torch.sin(t.a)', torch.sin(t.a)) # sin of native tensor\n\n```\n\nThe result should be\n\n```text\n<Tensor 0x7f0dae602760>\n\u251c\u2500\u2500 a --> tensor([[-1.2672, -1.5817, -0.3141],\n\u2502 [ 1.8107, -0.1023, 0.0940]])\n\u2514\u2500\u2500 b --> <Tensor 0x7f0dae602820>\n \u2514\u2500\u2500 x --> tensor([[ 1.2224, -0.3445, -0.9980, -0.4085],\n [ 1.5956, 0.8825, -0.5702, -0.2247],\n [ 0.9235, 0.4538, 0.8775, -0.2642]])\n\ntensor([[-0.9559, 0.7684, 0.2682, -0.6419, 0.8637],\n [ 0.9526, 0.2927, -0.0591, 1.2804, -0.2455],\n [ 0.4699, -0.9998, 0.6324, -0.6885, 1.1488],\n [ 0.8920, 0.4401, -0.7785, 0.5931, 0.0435]])\n\nStructure of tree\nt.a:\ntensor([[-1.2672, -1.5817, -0.3141],\n [ 1.8107, -0.1023, 0.0940]])\nt.b:\n<Tensor 0x7f0dae602820>\n\u2514\u2500\u2500 x --> tensor([[ 1.2224, -0.3445, -0.9980, -0.4085],\n [ 1.5956, 0.8825, -0.5702, -0.2247],\n [ 0.9235, 0.4538, 0.8775, -0.2642]])\n\nt.b.x\ntensor([[ 1.2224, -0.3445, -0.9980, -0.4085],\n [ 1.5956, 0.8825, -0.5702, -0.2247],\n [ 0.9235, 0.4538, 0.8775, -0.2642]])\n\nMath calculation\nt ** 2:\n<Tensor 0x7f0dae602eb0>\n\u251c\u2500\u2500 a --> tensor([[1.6057, 2.5018, 0.0986],\n\u2502 [3.2786, 0.0105, 0.0088]])\n\u2514\u2500\u2500 b --> <Tensor 0x7f0dae60c040>\n \u2514\u2500\u2500 x --> tensor([[1.4943, 0.1187, 0.9960, 0.1669],\n [2.5458, 0.7789, 0.3252, 0.0505],\n [0.8528, 0.2059, 0.7699, 0.0698]])\n\ntorch.sin(t).cos()\n<Tensor 0x7f0dae621910>\n\u251c\u2500\u2500 a --> tensor([[0.5782, 0.5404, 0.9527],\n\u2502 [0.5642, 0.9948, 0.9956]])\n\u2514\u2500\u2500 b --> <Tensor 0x7f0dae6216a0>\n \u2514\u2500\u2500 x --> tensor([[0.5898, 0.9435, 0.6672, 0.9221],\n [0.5406, 0.7163, 0.8578, 0.9753],\n [0.6983, 0.9054, 0.7185, 0.9661]])\n\n\nBackward calculation\ngrad of t:\n<Tensor 0x7f0dae60c400>\n\u251c\u2500\u2500 a --> tensor([[-0.0435, -0.0535, -0.0131],\n\u2502 [ 0.0545, -0.0064, -0.0002]])\n\u2514\u2500\u2500 b --> <Tensor 0x7f0dae60cbe0>\n \u2514\u2500\u2500 x --> tensor([[ 0.0357, -0.0141, -0.0349, -0.0162],\n [ 0.0476, 0.0249, -0.0213, -0.0103],\n [ 0.0262, 0.0113, 0.0248, -0.0116]])\n\n\nNative operation\ntorch.sin(t.a)\ntensor([[-0.9543, -0.9999, -0.3089],\n [ 0.9714, -0.1021, 0.0939]], grad_fn=<SinBackward>)\n\n```\n\nFor more quick start explanation and further usage, take a look at:\n\n* [Quick Start](https://opendilab.github.io/DI-treetensor/main/tutorials/quick_start/index.html)\n\n## Extension\n\nIf you need to translate `treevalue` object to runnable source code, you may use the [potc-treevalue](https://github.com/potc-dev/potc-treevalue) plugin with the installation command below\n\n```\npip install DI-treetensor[potc]\n```\n\nIn potc, you can translate the objects to runnable python source code, which can be loaded to objects afterwards by the python interpreter, like the following graph\n\n![potc_system](https://github.com/opendilab/DI-treetensor/blob/main/docs/source/_static/potc-doing.svg)\n\nFor more information, you can refer to\n\n- [potc-dev/potc](https://github.com/potc-dev/potc)\n- [potc-dev/potc-treevalue](https://github.com/potc-dev/potc-treevalue)\n- [potc-dev/potc-torch](https://github.com/potc-dev/potc-torch)\n- [Potc Plugin Installation](https://opendilab.github.io/DI-treetensor/main/tutorials/plugins/index.html#potc-support)\n\n## Contribution\n\nWe appreciate all contributions to improve DI-treetensor, both logic and system designs. Please refer to CONTRIBUTING.md for more guides.\n\nAnd users can join our [slack communication channel](https://join.slack.com/t/opendilab/shared_invite/zt-v9tmv4fp-nUBAQEH1_Kuyu_q4plBssQ), or contact the core developer [HansBug](https://github.com/HansBug) for more detailed discussion.\n\n## License\n\n`DI-treetensor` released under the Apache 2.0 license.\n",
"bugtrack_url": null,
"license": "Apache License, Version 2.0",
"summary": "A flexible, generalized tree-based tensor structure.",
"version": "0.5.0",
"project_urls": {
"Homepage": "https://github.com/opendilab/DI-treetensor"
},
"split_keywords": [
"tree-structured",
"value",
"management"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "94e14be84a374536c6f361d8701346a43cb9da3f8bfc2be4e138e0c91e6b2a29",
"md5": "cde4138b40bf1402e8b5fb7d18d694aa",
"sha256": "74f00f52facf77059fd8dee28dad896c12b06585b9a0e52e7aaf22942a5c16d3"
},
"downloads": -1,
"filename": "DI_treetensor-0.5.0-py3-none-any.whl",
"has_sig": false,
"md5_digest": "cde4138b40bf1402e8b5fb7d18d694aa",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.8",
"size": 46818,
"upload_time": "2024-10-21T08:58:49",
"upload_time_iso_8601": "2024-10-21T08:58:49.955177Z",
"url": "https://files.pythonhosted.org/packages/94/e1/4be84a374536c6f361d8701346a43cb9da3f8bfc2be4e138e0c91e6b2a29/DI_treetensor-0.5.0-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "1eae08a0f4d8413a582a36de3fd8b7f6b4b228415a86b78956ccae74363327d1",
"md5": "0f70cfc74232ef516a9720e856c29c39",
"sha256": "831be3a52c80823dfc6d853a96ef7a89719e07c6655eaa50fa754a41d5f75393"
},
"downloads": -1,
"filename": "di_treetensor-0.5.0.tar.gz",
"has_sig": false,
"md5_digest": "0f70cfc74232ef516a9720e856c29c39",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.8",
"size": 39435,
"upload_time": "2024-10-21T08:58:51",
"upload_time_iso_8601": "2024-10-21T08:58:51.024521Z",
"url": "https://files.pythonhosted.org/packages/1e/ae/08a0f4d8413a582a36de3fd8b7f6b4b228415a86b78956ccae74363327d1/di_treetensor-0.5.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-10-21 08:58:51",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "opendilab",
"github_project": "DI-treetensor",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"requirements": [
{
"name": "treevalue",
"specs": [
[
">=",
"1.5.0"
]
]
},
{
"name": "torch",
"specs": [
[
">=",
"1.10.0"
]
]
},
{
"name": "hbutils",
"specs": [
[
">=",
"0.6.13"
]
]
},
{
"name": "numpy",
"specs": []
}
],
"lcname": "di-treetensor"
}